A Fluorescence-Based Biosensor for Measurement of Cell Derived Forces
用于测量细胞力的荧光生物传感器
基本信息
- 批准号:7749432
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdsorptionAtomic Force MicroscopyBindingBinding SitesBiological AssayBiosensorBiotinylationBrainCalibrationCell AdhesionCell Adhesion MoleculesCell Differentiation processCell physiologyCell surfaceCell-Matrix JunctionCellsCirrhosisConnective TissueCuesDevelopmentElastomersEnergy TransferEngineeringEnsureEnvironmentEventExtracellular MatrixExtracellular Matrix ProteinsFibronectinsFluorescenceGlassGoalsGrowthIndividualIntegrin-mediated Cell Adhesion PathwayIntegrinsLengthLinkLiverMalignant NeoplasmsMeasurableMeasurementMeasuresMechanicsMediatingMesenchymal Stem CellsModelingMovementMuscleNeoplasm MetastasisNormal tissue morphologyPathologicPlasticsPlayPolymersPolystyrenesPropertyProteinsRelative (related person)ResearchResolutionRoleSideSignal TransductionSiliconStreptavidinSumSurfaceSurface PropertiesSystemTechniquesTheoretical modelTissuesTractionVascular Endothelial Cellbasebonecantilevercellular imagingdesigndetectordisulfide bondfluid flowfluorescence microscopefluorophoreimaging modalityin vivoinsightmagnetic fieldmathematical modelmigrationmonolayerneoplastic cellpolypeptideprotein expressionprotein purificationpublic health relevanceresponsesensorstellate cellsurface coatingtissue culturetooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Insights over the past decades have demonstrated the importance of mechanical cues in cellular function. However, few tools exist to measure cell-generated forces, and many of these have significant limitations: cells must be plated onto a 2-D surface; cells must be plated onto soft, deformable substrates; and cell forces cannot be measured in multicellular, in vivo environments. The goal of the current proposal is to develop a biosensor protein which would effectively convert a mechanical signal to a fluorescence signal. Changes in the fluorescence signal will be measurable in a wide range of environments, including 3-D assays, substrates of varying stiffness, and in vivo systems. This biosensor protein will be constructed of two domains: a cell-binding domain and a force-transducing domain. The cell- binding domain will consist of a fragment of the extracellular matrix protein, fibronectin, that has been shown to mediate cell adhesion. The force-transducing domain will consist of a length of unstructured polypeptide, flanked on either side by fluorescent proteins. A phenomenon known as Forster Resonance Energy Transfer (FRET) occurs between the two fluorescent proteins when they are in close proximity. This energy transfer diminishes as the two are pulled further apart, and can be measured on a fluorescence microscope. The FRET signal can be used to quantify the end-to-end distance of the polypeptide that links them. The force applied to the unstructured polypeptide can be calculated using mathematical models of polymer dynamics. The relationship between the applied force and the FRET signal will also be measured experimentally using shear flow assays and magnetic field assays. Subsequently, the force biosensor will be used to measure cell-generated forces, with resolution at the level of single integrin bonds. PUBLIC HEALTH RELEVANCE: Cells generate contractile forces that pull on surrounding tissues and cells. There is increasing evidence that the mechanical environment plays an important role in the function and growth of tissues; for example, the tissue of metastatic tumors is significantly stiffer than surrounding healthy tissue; in the liver, stellate cells that drive cirrhosis can only thrive when they have stiff tissue surrounding them; and the fate of mesenchymal stem cells can be directed towards bone, brain, or muscle simply by altering the mechanical properties of the surface to which they are attached. However, limited tools exist to measure these forces. The goal of the current proposal is to develop a protein biosensor that converts mechanical signals into fluorescence signals, allowing for measurement of these cell-derived forces in a wide range of settings.
描述(由申请人提供):过去几十年的见解已经证明了机械线索在细胞功能中的重要性。然而,存在很少的工具来测量细胞产生的力,并且其中许多具有显著的局限性:细胞必须接种到2-D表面上;细胞必须接种到柔软的可变形基底上;并且细胞力不能在多细胞体内环境中测量。目前建议的目标是开发一种生物传感器蛋白质,它将有效地将机械信号转换为荧光信号。荧光信号的变化将在广泛的环境中可测量,包括3-D测定、不同硬度的基质和体内系统。该生物传感器蛋白将由两个结构域构成:细胞结合结构域和力转导结构域。细胞结合结构域将由细胞外基质蛋白纤连蛋白的片段组成,纤连蛋白已被证明介导细胞粘附。力转导结构域将由一段非结构化多肽组成,两侧是荧光蛋白。当两种荧光蛋白非常接近时,它们之间会发生一种称为福斯特共振能量转移(FRET)的现象。这种能量转移随着两者被进一步拉开而减少,并且可以在荧光显微镜上测量。FRET信号可用于定量连接它们的多肽的端到端距离。可以使用聚合物动力学的数学模型计算施加到非结构化多肽的力。所施加的力和FRET信号之间的关系也将使用剪切流测定和磁场测定进行实验测量。随后,力生物传感器将用于测量细胞产生的力,分辨率在单个整合素键的水平。公共卫生相关性:细胞产生收缩力,拉动周围的组织和细胞。越来越多的证据表明,机械环境在组织的功能和生长中起着重要作用;例如,转移性肿瘤的组织比周围的健康组织明显更硬;在肝脏中,驱动肝硬化的星状细胞只有在周围有坚硬的组织时才能茁壮成长;并且间充质干细胞的命运可以简单地通过改变它们所附着的表面的机械性质而被导向骨、脑或肌肉。然而,测量这些力的工具有限。目前的建议的目标是开发一种蛋白质生物传感器,将机械信号转换为荧光信号,允许在广泛的设置中测量这些细胞衍生的力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Andrew Lemmon其他文献
Christopher Andrew Lemmon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Andrew Lemmon', 18)}}的其他基金
A Computational Model of Traction Force-Induced Fibronectin Fibril Growth
牵引力诱导纤连蛋白原纤维生长的计算模型
- 批准号:
9750005 - 财政年份:2015
- 资助金额:
$ 4.72万 - 项目类别:
A Fluorescence-Based Biosensor for Measurement of Cell Derived Forces
用于测量细胞力的荧光生物传感器
- 批准号:
7898623 - 财政年份:2009
- 资助金额:
$ 4.72万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant