Natural engineering of multi-electron biological oxidation & reduction
多电子生物氧化自然工程
基本信息
- 批准号:7738902
- 负责人:
- 金额:$ 35.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-02-01 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgeBioenergeticsBiologicalBiological ModelsBiomimeticsCatalysisCatalytic DomainChargeChemicalsChemistryComplexConsensusCoupledCouplingCytochromesDatabasesDevelopmentDevicesDiffusionDiseaseElectrodesElectron TransportElectron Transport Complex IIIElectronsElementsEnergy SupplyEngineeringEnvironmentFlavinsFoodFoundationsFreedomGenerationsGlobinGrantGuidelinesHealthHemeHumanHydrocarbonsHydrogen PeroxideHydroquinonesIntegral Membrane ProteinInvestigationKineticsLeftLifeLigand BindingLightMembraneMembrane PotentialsMetabolicMetabolismMethodsMitochondriaModelingModificationMono-SNADH dehydrogenase (ubiquinone)NatureNeurofibrillary TanglesNiacinamideOnset of illnessOperative Surgical ProceduresOxidation-ReductionOxidoreductaseOxygenOxygenasesPeroxidesPhotosynthetic Reaction CentersPhysiologicalPlaguePlant RootsPlantsPositioning AttributeProcessPropertyProtein EngineeringProteinsProtonsQuinonesReactionReactive Oxygen SpeciesRegulationResearch PersonnelResearch Project GrantsResolutionResourcesRespirationRespiratory ChainSeriesSiteSolutionsStressStructureSuperoxidesTestingThermodynamicsTimeWaterWorkbasecell growth regulationcofactorcytochrome ccytochrome c oxidasedesignengineering designhydroquinoneinsightmicroorganismmodel designnanoscalenovelphotosystemrespiratoryscaffoldsimulationtheories
项目摘要
The energetic foundation of cellular activity and its regulation relies on a string of oxidoreductase proteins in
biological oxidative and reductive metabolism and respiratory membrane energy conversion. The
mechanisms of many catalytic sites of substrate oxidation-reduction and energy conversion, particularly in
mitochondria! respiration, have proven to be difficult to access experimentally due to natural complexity and
fragility. They remain poorly understood. Our proposal aims to reveal the natural engineering of the redox-
coupled proton exchange and transfer operating at these sites of multi-electron cofactor and substrate
oxidation-reduction. Our approach builds on our engineering guidelines for protein electron tunneling,
strengthened in the last grant period, to inform the de novo design and assembly of simple and robust alpha-
helical proteins intended to serve as protein-based models, maquettes, for multi-electron catalysis.
Maquettes will be designed to provide the simplest water-soluble or trans-membrane structures that can
capture the functional properties of natural redox centers. Their simplicity and adaptability allow us to
investigate catalytic functional problems that remain unsolved in the respiratory chain. Maquettes will be
activated with light and electrometric methods in solution and on electrodes to dissect step-by-step the
thermodynamics and kinetics of electron transfer and proton exchange. Maquettes will incorporate all key
two-electron, multi-proton cofactors/substrates quinone, nicotinamide and flavin, and the two-and four-
electron substrate O2. We are positioned to focus on the problem of reversible energy conversion catalysis of
hydroquinone-quinone in the Qo site of the cytochrome bd aiming to determine the mechanistic root of
medically harmful short-circuits and radical generation. We will extend our maquette creation of a stable O2
ferrous heme state, to examine two- and four-electron O2 reduction and the physiologically important two-
electron chemistries of NO and H2O2. With stable and adaptable maquettes, we can exploit physiological
chemistry in the development of nanoscale devices.
The breakdown of food by oxygen respiration in humans produces all the energy needed for a healthy life
and is a central part of cellular regulation. It is normal that there is a steady slow release of oxygen radicals
that over time cause cellular damage, aging and disease. Under stress, and in during many surgical
procedures bursts of radicals can accelerate these deleterious processes. The research of this grant
describes a new way to understand the processes underlying healthy oxidative energy supply and control as
well as deleterious radical generation. With progress we will be better predict and track the onset of disease
and act to slow it or reverse it.
细胞活动及其调控的能量基础依赖于体内一系列氧化还原酶蛋白。
生物氧化还原代谢和呼吸膜能量转换。这个
底物氧化还原和能量转换的多个催化位的机理,特别是在
线粒体!呼吸,已被证明很难通过实验获得,因为自然的复杂性和
脆弱。人们仍然对它们知之甚少。我们的提案旨在揭示氧化还原的自然工程--
多电子辅因子和底物在这些位置上的耦合质子交换和转移
氧化还原。我们的方法建立在我们的蛋白质电子隧道工程指南的基础上,
在上一次赠款期间得到了加强,以使从头设计和组装简单而坚固的阿尔法-
螺旋蛋白质可用作多电子催化的蛋白质模型和模板。
模型将被设计成提供最简单的水溶性或跨膜结构,能够
捕捉天然氧化还原中心的功能特性。它们的简单性和适应性使我们能够
调查呼吸链中仍未解决的催化功能问题。Maquettes将是
在溶液和电极上用光和电测法激活,一步步地解剖
电子转移和质子交换的热力学和动力学。Maquettes将整合所有密钥
双电子、多质子辅因子/底物苯醌、烟酰胺和黄素,以及两和四-
电子衬底O2。我们的定位是专注于可逆能量转换催化的问题
细胞色素BD的QO位对苯二酚的作用机理研究
医学上有害的短路和激进的产生。我们将扩展我们创造的稳定氧气的模型
亚铁血红素状态,以考察两电子和四电子氧还原以及生理上重要的两电子和四电子氧还原.
NO和H_2O_2的电子化学有了稳定和适应性强的模型,我们可以开发生理
化学在开发纳米级设备中的作用。
人类通过氧气呼吸分解食物会产生健康生活所需的全部能量。
是细胞调节的核心部分。氧自由基有稳定缓慢的释放是正常的
随着时间的推移,这会导致细胞损伤、衰老和疾病。在压力下,在许多手术中
程序中爆发的自由基可能会加速这些有害的过程。关于这笔赠款的研究
描述了一种新的方法来理解健康的氧化能量供应和控制的基本过程,如
以及有害的激进一代。随着进步,我们将更好地预测和跟踪疾病的发生
并采取行动减缓或逆转它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER LESLIE DUTTON其他文献
PETER LESLIE DUTTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER LESLIE DUTTON', 18)}}的其他基金
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
7373141 - 财政年份:2006
- 资助金额:
$ 35.56万 - 项目类别:
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
7183287 - 财政年份:2005
- 资助金额:
$ 35.56万 - 项目类别:
PROTEIN CONFORMATIONAL CHANGE TRIGGERED BY NI-BCHL-A EXCITATION
NI-BCHL-A 兴奋引发的蛋白质构象变化
- 批准号:
6976513 - 财政年份:2004
- 资助金额:
$ 35.56万 - 项目类别:
The Natural Engineering of Internal Electric Fields in Redox Proteins at Differen
Differen 氧化还原蛋白内部电场的自然工程
- 批准号:
6706156 - 财政年份:2003
- 资助金额:
$ 35.56万 - 项目类别:
ELECTRIC FIELD EFFECTS ON PHOTOSYSTEM II ELECTRON TRANSFER
电场对光系统 II 电子传输的影响
- 批准号:
6480854 - 财政年份:2001
- 资助金额:
$ 35.56万 - 项目类别:
MAKING, MEASURING, AND MODULATING ELECTRIC FIELDS WITH SYNTHETIC PROTEINS
用合成蛋白质制造、测量和调节电场
- 批准号:
6336544 - 财政年份:2000
- 资助金额:
$ 35.56万 - 项目类别:
ELECTRIC FIELD EFFECTS ON PHOTOSYSTEM II ELECTRON TRANSFER
电场对光系统 II 电子传输的影响
- 批准号:
6328058 - 财政年份:2000
- 资助金额:
$ 35.56万 - 项目类别:
相似海外基金
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 35.56万 - 项目类别:
Mitochondria-rich microvesicles for restoration of intracellular bioenergetics
富含线粒体的微泡用于恢复细胞内生物能
- 批准号:
10586699 - 财政年份:2023
- 资助金额:
$ 35.56万 - 项目类别:
Defining the mechanisms of MSC extracellular vesicle modulation of microglia metabolism and bioenergetics in traumatic brain injury recovery
定义MSC细胞外囊泡调节小胶质细胞代谢和生物能学在创伤性脑损伤恢复中的机制
- 批准号:
10719905 - 财政年份:2023
- 资助金额:
$ 35.56万 - 项目类别:
To everything a season: bioenergetics in seasonal environments
季节的一切:季节性环境中的生物能学
- 批准号:
RGPIN-2020-06705 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Discovery Grants Program - Individual
Characterizing Alzheimer's Risk in Retired Night Shift Workers: Cognitive Function, Brain Volume, and Brain Bioenergetics
退休夜班工人患阿尔茨海默病的风险特征:认知功能、脑容量和脑生物能学
- 批准号:
10350125 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Modulating Cellular Bioenergetics to Improve Skeletal Health
调节细胞生物能量以改善骨骼健康
- 批准号:
10661806 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Unraveling the Associations of Molecular-Genetic Bioenergetics and Chemotherapy-Induced Fatigue Symptoms in Patients with Breast Cancer
揭示乳腺癌患者分子遗传学生物能学与化疗引起的疲劳症状之间的关联
- 批准号:
10684326 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
The role of transcription factor Ying-Yang 1 in the cardiac bioenergetics regulation
转录因子Ying-Yang 1在心脏生物能调节中的作用
- 批准号:
10688160 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Mitochondrial protein S-glutathionylation: an in-depth interrogation of the glutaredoxin-2 glutathionylome and its impact on bioenergetics and redox signaling
线粒体蛋白 S-谷胱甘肽化:对 glutaredoxin-2 谷胱甘肽组的深入研究及其对生物能学和氧化还原信号传导的影响
- 批准号:
RGPIN-2022-03240 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




