Cancer Informatics

癌症信息学

基本信息

项目摘要

Since its inception, the Cancer Informatics Shared Resource (CISR) has promoted high quality, innovative cancer research by providing members of the UWCCC with an informatics intellectual resource, including advancements in Bioinformatics, Clinical Informatics, Image Analysis and Computational Biology. Recent developments include progress toward new computational facilities and new CISR faculty from the Department of Biostatistics and Medical Informatics. These faculty bring expertise in genetics/genomics, bioinformatics, imaging and visualization techniques. We have also made significant progress in clinical informatics. The CISR continues to advance in its essential role to contribute to all UWCCC programs by providing technical and intellectual resources that address the specific needs of UWCCC researchers in a cost-effective manner. The CISR accomplishes this in two ways. (1) It promotes multidisciplinary collaboration by providing access to a range of skills and expertise in computational science, informatics, clinical informatics. (2) CISR faculty and professional staff fulfill an important leadership role by tracking and anticipating the needs of the UWCCC research community and then developing specialized informatics facilities to meet those needs. Those collaborations include both clinical and laboratory investigations. The CISR faculty and staff are members of the Department of Biostatistics and Medical Informatics and are part of the Department's training and research missions. CISR faculty participate in a training grant in bioinformatics funded by the National Library of Medicine. Pre- and postdoctoral students contributed the cancer research activities as part of their training by developing new methods and refining existing methods, at no cost to the CISR. In addition, faculty have their own research grants which also develop new methods, often stimulated by their collaborations with UWCCC investigators. This synergy between methodology research and collaboration has been a hallmark of this shared resource. In addition, bioinformatics faculty have adjunct appointments in the Department of Computer Sciences which also provides access to additional expertise. Finally, since the CISR faculty and staff are part of the Department of Biostatistics and Medical Informatics, they can also interact with leading biostatisticians. While the CISR has grown substantially over the past five years to nine faculty, two additional new positions already have been allocated for recruitment, and further growth beyond that is expected over the next five years.
自成立以来,癌症信息学共享资源(CISR)促进了高质量,创新, 通过为UWCCC成员提供信息学知识资源来进行癌症研究,包括 生物信息学、临床信息学、图像分析和计算生物学的进展。最近 发展包括新的计算设施和新的CISR教师的进展, 生物统计学和医学信息学系。这些教师带来了遗传学/基因组学方面的专业知识, 生物信息学、成像和可视化技术。我们在临床上也取得了重大进展, 信息学. CISR继续推进其重要作用,为所有UWCCC计划做出贡献, 提供技术和智力资源,以满足UWCCC研究人员的具体需求, 成本效益的方式。CISR通过两种方式实现这一点。(1)它促进多学科 通过提供获得计算科学,信息学, 临床信息学(2)CISR的教师和专业人员通过跟踪和 预测UWCCC研究社区的需求,然后发展专业信息学 设施来满足这些需求。这些合作包括临床和实验室研究。 CISR的教职员工是生物统计学和医学信息学系的成员, 是该部门培训和研究任务的一部分。CISR教师参加培训补助金, 由美国国家医学图书馆资助的生物信息学。前和博士后学生贡献了 通过开发新方法和改进现有方法,将癌症研究活动作为培训的一部分, 而不需要CISR付出任何代价。此外,教师有自己的研究赠款,也开发新的方法, 这通常是因为他们与UWCCC调查人员的合作。这种方法学与 研究和合作一直是这一共享资源的标志。此外,生物信息学系 在计算机科学系有兼职任命,也提供访问 额外的专业知识。最后,由于CISR的教职员工是生物统计学系的一部分, 医学信息学,他们也可以与领先的生物统计学家互动。 虽然CISR在过去五年中大幅增长至9名教师,但还有两个新职位 已经为招聘分配了100万美元,预计未来五年将进一步增长 年

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C DAVID PAGE, JR.其他文献

C DAVID PAGE, JR.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C DAVID PAGE, JR.', 18)}}的其他基金

Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
  • 批准号:
    8085232
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
  • 批准号:
    8274647
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Cancer Informatics
癌症信息学
  • 批准号:
    8250419
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
  • 批准号:
    8729006
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
  • 批准号:
    8466993
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
  • 批准号:
    8333324
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
  • 批准号:
    8085051
  • 财政年份:
    2011
  • 资助金额:
    $ 35.61万
  • 项目类别:
Cancer Informatics
癌症信息学
  • 批准号:
    7491895
  • 财政年份:
    2007
  • 资助金额:
    $ 35.61万
  • 项目类别:
Cancer Informatics
癌症信息学
  • 批准号:
    8067999
  • 财政年份:
  • 资助金额:
    $ 35.61万
  • 项目类别:
Cancer Informatics
癌症信息学
  • 批准号:
    7726694
  • 财政年份:
  • 资助金额:
    $ 35.61万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了