Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
基本信息
- 批准号:8333324
- 负责人:
- 金额:$ 54.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-09-14
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsCaringClinicClinicalComplexComputer AssistedComputer SecurityComputer softwareComputerized Medical RecordComputersConfidentialityDataData AnalysesData SetDevelopmentDiseaseDoseEnsureEnvironmentEvaluationGeneticGenetic DatabasesGenomicsGoalsHealthHealth PersonnelIndividualInstitutionLeadMachine LearningMedicalMedical GeneticsMedical RecordsMedicineMiningModelingOperating SystemOutputPatientsPrivacyPublicationsPublishingRecording of previous eventsResearch PersonnelResourcesRiskRunningSecureSecurityStructureSystemTechnologyWarfarinWisconsinWorkbasedata managementdata miningdata sharingdesignempoweredexperiencelaptopmeetingsnovelpatient privacypredictive modelingprototypevirtual
项目摘要
DESCRIPTION (provided by applicant):
Computer-assisted medicine is at a crossroads: medical care requires accurate data, but making such data widely available can create unacceptable risks to the privacy of individual patients. This tension between utility and privacy is especially acute in predictive personalized medicine (PPM). PPM holds the promise of making treatment decisions tailored to the individual based on her or his particular genetics and clinical history. Making PPM a reality requires running statistical, data mining and machine learning algorithms on combined genetic, clinical and demographic data to construct predictive models. Access to such data directly competes with the need for healthcare providers to protect the privacy of each patient's data, thus creating a tradeoff between model efficacy and privacy. Thus we find ourselves in an unfortunate standoff: significant medical advances that would result from more powerful mining of the data by a wider variety of researchers are hindered by significant privacy concerns on behalf of the patients represented in the data set. In this proposed work, we seek to develop and evaluate technology to resolve this standoff, enabling health practitioners and researchers to compute on privacy-sensitive medical records in order to make treatment decisions or create accurate models, while protecting patient privacy. We will evaluate our approach on a de-identified actual electronic medical record, with an average of 29 years of clinical history on each patient, and with detailed genetic data (650K SNPs) available for a subset of 5000 of the patients. This data set is available to us now through the Wisconsin Genomics Initiative, but only on a computer at the Marshfield Clinic. If successful our approach will make possible the sharing of this cutting-edge data set, and others like it that are now in development, including our ability to analyze this data at UW-Madison where we have thousands of processors available in our Condor pool. Our privacy approach integrates secure data access environments, including those appropriate to the use of laptops and cloud computing, with novel anonymization algorithms providing differential privacy guarantees for data and/or published results of data analysis. To this end, our specific aims are as follows:
AIM 1: Develop and deploy a secure local environment that, in combination with secure network functionality, will ensure end-to-end security and privacy for electronic medical records and biomedical datasets shared between clinical institutions and researchers.
AIM 2: Develop and deploy a secure virtual environment to allow large-scale, privacy-preserving data analysis "in the cloud."
AIM 3: Develop and evaluate privacy-preserving data mining algorithms for use with original (not anonymized) data sets consisting of electronic medical records and genetic data.
AIM 4: Develop and evaluate anonymizing data publishing algorithms and privacy guarantees that are appropriate to the complex structure present in electronic medical records with genetic data.
描述(由申请人提供):
计算机辅助医疗正处于十字路口:医疗保健需要准确的数据,但广泛提供这些数据可能会对个体患者的隐私造成不可接受的风险。效用和隐私之间的这种紧张关系在预测性个性化医疗(PPM)中尤为严重。PPM承诺根据她或他的特定遗传学和临床病史为个人量身定制治疗决策。要使PPM成为现实,需要在遗传、临床和人口统计数据的基础上运行统计、数据挖掘和机器学习算法,以构建预测模型。对这些数据的访问直接与医疗保健提供者保护每个患者数据隐私的需求相竞争,从而在模型功效和隐私之间形成权衡。因此,我们发现自己陷入了一个不幸的僵局:更广泛的研究人员对数据进行更强大的挖掘所带来的重大医学进步,受到了数据集中代表的患者的重大隐私问题的阻碍。在这项拟议的工作中,我们寻求开发和评估技术来解决这一僵局,使医疗从业者和研究人员能够计算隐私敏感的医疗记录,以便做出治疗决策或创建准确的模型,同时保护患者隐私。我们将在去识别的实际电子病历上评估我们的方法,每个患者平均有29年的临床病史,并有5000名患者的详细遗传数据(65万SNP)。我们现在可以通过威斯康星州基因组计划获得这些数据,但只能在马什菲尔德诊所的电脑上获得。如果成功的话,我们的方法将使这个尖端数据集的共享成为可能,其他类似的数据集现在正在开发中,包括我们在威斯康星大学麦迪逊分校分析这些数据的能力,我们在那里有数千个处理器在我们的Condor池中可用。我们的隐私方法将安全的数据访问环境(包括适合使用笔记本电脑和云计算的环境)与新颖的匿名化算法相结合,为数据和/或发布的数据分析结果提供差异化的隐私保证。为此,我们的具体目标如下:
目标1:开发和部署安全的本地环境,结合安全的网络功能,确保临床机构和研究人员之间共享的电子病历和生物医学数据集的端到端安全性和隐私性。
目标2:开发和部署一个安全的虚拟环境,以允许在云中进行大规模的隐私保护数据分析。"
目标3:开发和评估隐私保护数据挖掘算法,用于由电子病历和遗传数据组成的原始(非匿名)数据集。
目标4:开发和评估匿名数据发布算法和隐私保障,这些算法和隐私保障适用于含有基因数据的电子病历中存在的复杂结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C DAVID PAGE, JR.其他文献
C DAVID PAGE, JR.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C DAVID PAGE, JR.', 18)}}的其他基金
Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
- 批准号:
8085232 - 财政年份:2011
- 资助金额:
$ 54.51万 - 项目类别:
Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
- 批准号:
8274647 - 财政年份:2011
- 资助金额:
$ 54.51万 - 项目类别:
Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
- 批准号:
8729006 - 财政年份:2011
- 资助金额:
$ 54.51万 - 项目类别:
Machine Learning for Identifying Adverse Drug Events
用于识别药物不良事件的机器学习
- 批准号:
8466993 - 财政年份:2011
- 资助金额:
$ 54.51万 - 项目类别:
Secure Sharing of Clinical History & Genetic Data: Empowering Predictive Pers. Me
安全共享临床病史
- 批准号:
8085051 - 财政年份:2011
- 资助金额:
$ 54.51万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.51万 - 项目类别:
Research Grant