Dealing with missing data in longitudinal studies

处理纵向研究中缺失的数据

基本信息

  • 批准号:
    G0600599/1
  • 负责人:
  • 金额:
    $ 30.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Longitudinal studies – studies in which individuals are followed over periods of many months or years – are of great importance in understanding how aspects of people’s lifestyle or environment influence their risk of disease. When individuals are followed over extended periods it is inevitable that measurements on particular variables are sometimes missing, for example because a measuring device broke down, or a subject did not answer certain questions or did not attend an examination. Missing values make analyses of data from longitudinal studies more complicated, because they can lead to results that are both biased (they differ from the results that would be observed if the missing values were taken into account) and inefficient (they are less precise than they would be if missing values were taken into account). New statistical methods that address these issues have been proposed, and have the potential to decrease bias and increase efficiency in analyses of longitudinal studies. However these methods can be complex and there is currently little practical experience of their use. We are investigating practical issues in applying these methods, in particular a method called multiple imputation, in order to demonstrate the circumstances in which they are useful, develop strategies for choosing models and confirming that they are appropriate, and compare different approaches and software. As well as publishing the results of the study in scientific journals, we will develop guidelines for people who use the methods in the future.
纵向研究--对个人进行长达数月或数年的跟踪研究--对于了解人们的生活方式或环境的各个方面如何影响他们的疾病风险非常重要。当对个体进行较长时间的跟踪时,对特定变量的测量有时不可避免地会丢失,例如,因为测量仪器故障,或者受试者没有回答某些问题或没有参加考试。缺失值使纵向研究的数据分析变得更加复杂,因为它们可能导致结果既有偏见(它们与如果考虑缺失值将观察到的结果不同)又低效(它们的精确度低于如果考虑缺失值的结果)。已经提出了解决这些问题的新的统计方法,并有可能在纵向研究的分析中减少偏差和提高效率。然而,这些方法可能很复杂,目前几乎没有使用它们的实际经验。我们正在调查应用这些方法的实际问题,特别是一种称为多重归罪的方法,以证明它们在什么情况下是有用的,制定选择模型并确认它们是否合适的战略,并比较不同的方法和软件。除了在科学期刊上发表这项研究的结果外,我们还将为未来使用这些方法的人制定指南。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Sterne其他文献

Estimating the effect of “treatment in the treated” - instrumental variable analysis vs conventional regression methods in the titre-2 trial in cardiac surgery
  • DOI:
    10.1186/1745-6215-16-s2-p147
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Chris Rogers;Katie Pike;Jonathan Sterne;Barney Reeves
  • 通讯作者:
    Barney Reeves
The risk of Long Covid symptoms: a systematic review and meta-analysis of controlled studies
长新冠症状的风险:对照研究的系统综述和荟萃分析
  • DOI:
    10.1038/s41467-025-59012-w
  • 发表时间:
    2025-05-07
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Lauren L. O’Mahoney;Ash Routen;Clare Gillies;Sian A. Jenkins;Abdullah Almaqhawi;Daniel Ayoubkhani;Amitava Banerjee;Chris Brightling;Melanie Calvert;Shabana Cassambai;Winifred Ekezie;Mark P. Funnell;Anneka Welford;Arron Peace;Rachael A. Evans;Shavez Jeffers;Andrew P. Kingsnorth;Manish Pareek;Samuel Seidu;Thomas J. Wilkinson;Andrew Willis;Roz Shafran;Terence Stephenson;Jonathan Sterne;Helen Ward;Tom Ward;Kamlesh Khunti
  • 通讯作者:
    Kamlesh Khunti
A new large-scale meta-epidemiological study on bias in randomized trials using routinely collected risk-of-bias assessments by cochrane reviewers: results from the robes study
  • DOI:
    10.1186/1745-6215-16-s2-p168
  • 发表时间:
    2015-11-16
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Jelena Savovic;Rebecca Turner;David Mawdsley;Julian Higgins;Jonathan Sterne
  • 通讯作者:
    Jonathan Sterne
Effect of Hepatitis C Treatment on Cd4+ T-C El L Counts And The Risk Of Death In HIV–HCV-Coinfected Patients: The Cohere Collaboration
丙型肝炎治疗对 HIV-HCV 合并感染患者 Cd4+ T-C El L 计数和死亡风险的影响:Cohere 合作
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    C. Smit;Jonathan Sterne;A. Monforte;Massimo M. Puotti;F. Wolf;L. Peters;B. Ledergerber;S. Wit;Hellen H. Sambatakou;A. Rauch;F. Dabis
  • 通讯作者:
    F. Dabis
Primary Care implementation of Germ Defence, a digital behaviour change intervention to improve household infection control during the COVID-19 pandemic: A structured summary of a study protocol for a randomised controlled trial
  • DOI:
    10.1186/s13063-021-05188-7
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Jeremy Horwood;Melanie Chalder;Ben Ainsworth;James Denison-Day;Frank de Vocht;Martha M. C. Elwenspoek;Pippa Craggs;Rachel Denholm;Jonathan Sterne;Cathy Rice;Sascha Miller;Beth Stuart;Paul Little;Michael Moore;Merlin Willcox;John Macleod;Martin Gullford;Kate Morton;Lauren Towler;Nick Francis;Richard Amlôt;Lucy Yardley
  • 通讯作者:
    Lucy Yardley

Jonathan Sterne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Sterne', 18)}}的其他基金

Prognosis of HIV-positive patients treated with antiretroviral therapy: comparative analyses and treatment strategies
接受抗逆转录病毒治疗的艾滋病毒阳性患者的预后:比较分析和治疗策略
  • 批准号:
    MR/J002380/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Research Grant
Making diagnostic systematic reviews fit for purpose: improving decision making in the NHS
使诊断系统评价符合目的:改善 NHS 的决策
  • 批准号:
    G0801405/1
  • 财政年份:
    2009
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Research Grant
Monitoring and modelling prognosis in the era of HAART (Extension to Strategic Grant G0100221)
HAART 时代的监测和预后建模(战略拨款延期 G0100221)
  • 批准号:
    G0700820/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Research Grant

相似国自然基金

GCM磷酸化调控果蝇胚胎胶质细胞发育与功能的机制研究
  • 批准号:
    31171043
  • 批准年份:
    2011
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
Missing in Metastasis基因在子宫内膜癌转移中的机制
  • 批准号:
    81060175
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Missing Data as Useful Data
将缺失数据视为有用数据
  • 批准号:
    MR/Y011856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Fellowship
Causal survival analysis with missing data in time-varying confounders
时变混杂因素中缺失数据的因果生存分析
  • 批准号:
    23K11017
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
  • 批准号:
    2318925
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Standard Grant
Fusion Pursuit for Pattern-Mixture Models with Application to Longitudinal Studies with Nonignorable Missing Data
模式混合模型的融合追踪及其在不可忽略缺失数据纵向研究中的应用
  • 批准号:
    2310217
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Continuing Grant
Development of statistical inference of extended Hawkes processes including missing data problem
扩展霍克斯过程的统计推断的发展,包括缺失数据问题
  • 批准号:
    23H03358
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
  • 批准号:
    2886293
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Studentship
Understanding the Association between Sublingual Buprenorphine and Oral Health Outcomes
了解舌下含服丁丙诺啡与口腔健康结果之间的关联
  • 批准号:
    10765299
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
Leveraging the Hidden Genome to Recover the Missing Heritability of Cancer
利用隐藏的基因组来恢复癌症缺失的遗传性
  • 批准号:
    10586348
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
Autonomous Unmanned Aerial Vehicle data analysis: is it the key to the many:1 ratio, or are we missing a step?
自主无人机数据分析:是多:1比例的关键,还是我们遗漏了一步?
  • 批准号:
    2891512
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Studentship
Research on imputation methods for missing values in real world data
现实数据缺失值插补方法研究
  • 批准号:
    23K11011
  • 财政年份:
    2023
  • 资助金额:
    $ 30.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了