In vivo microendoscopy for imaging deep regions of the brain

用于大脑深层区域成像的体内显微内窥镜检查

基本信息

  • 批准号:
    G0701061/1
  • 负责人:
  • 金额:
    $ 39.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The ability to image individual cells deep within the mammalian brain will open new research opportunities in both basic and clinical science. Current brain imaging techniques do not provide high-resolution images of the tissues. For example, brain scanning techniques such as magnetic resonance imaging (MRI) only achieve a resolution of a few millimeters. Within such an area there may be several thousand cells, each performing a unique task. Although modern light microscopes can achieve the resolution needed to see individual cells they can only visualize objects placed immediately in front of the microscope lens. Recall how frustrating it was in biology class to find the cells on the microscope slide! To create a method capable of imaging deep within the brain, that can also observe what single cells are doing, will require a new optical device. The internet boom has not only brought an enormous wealth of information to our fingertips but has driven the telecommunications industry to achieve significant developments in the area of micro-optics. Gradient refractive index (GRIN) lenses, in which light is guided as a consequence of the internal variations in optical medium, are now produced cheaply and with sub-millimeter dimensions. Currently the smallest GRIN lenses have the diameter of a human hair, around100 microns. Unlike traditional lenses, GRIN lenses are not ground to shape but generated by doping glass that can then be extruded to the desired diameter. A little like the method used to introduce the letters to seaside rock. Due to their tiny dimensions, GRIN lenses can be used to produce miniature endoscopes. GRIN lens based endoscopes will, like a traditional endoscope be able to achieve access to remote parts of the body, however , a GRIN lens endoscope will be minimally invasive as a consequence of being so small. Thus by combining key characteristics of these devices it will be possible to image individual cells within previously inaccessible parts of the brain.
对哺乳动物大脑深处单个细胞成像的能力将为基础科学和临床科学开辟新的研究机会。目前的脑成像技术不能提供组织的高分辨率图像。例如,磁共振成像(MRI)等大脑扫描技术只能达到几毫米的分辨率。在这样一个区域内,可能有几千个细胞,每个细胞执行一项独特的任务。尽管现代光学显微镜可以达到观察单个细胞所需的分辨率,但它们只能看到放置在显微镜镜头前的物体。回想一下在生物课上找到显微镜载玻片上的细胞是多么令人沮丧!为了创造一种能够在大脑深处成像的方法,同时也能观察到单个细胞的活动,将需要一种新的光学设备。互联网的繁荣不仅给我们的指尖带来了巨大的信息财富,而且推动了电信行业在微光学领域取得了重大发展。梯度折射率透镜(GRIN),其中光被引导的结果,在光学介质的内部变化,现在生产成本低,尺寸为亚毫米。目前,最小的GRIN透镜直径只有一根头发大小,约为100微米。与传统透镜不同,GRIN透镜不是磨成形状的,而是由掺杂玻璃制成的,然后可以挤压到所需的直径。有点像在海边岩石上刻字母的方法。由于其微小的尺寸,GRIN透镜可用于生产微型内窥镜。基于GRIN透镜的内窥镜将像传统的内窥镜一样能够到达身体的偏远部位,然而,GRIN透镜内窥镜由于体积小,将是微创的。因此,通过结合这些设备的关键特征,将有可能对以前无法进入的大脑部分中的单个细胞进行成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

N Emptage其他文献

N Emptage的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('N Emptage', 18)}}的其他基金

An interrogation of synaptic dysfunctions arising from human cognitive disease gene mutations using opto-physiological and neurochemical strategies.
使用光生理学和神经化学策略对人类认知疾病基因突变引起的突触功能障碍进行研究。
  • 批准号:
    MR/X02170X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Deep-brain fluorescence imaging
深部脑荧光成像
  • 批准号:
    BB/P02730X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Achieving synaptic stability: An investigation of processes that maintain glutamate receptor clusters at synapses
实现突触稳定性:对突触维持谷氨酸受体簇的过程的研究
  • 批准号:
    BB/J018724/1
  • 财政年份:
    2013
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
QUANTITATIVE EXAMINATION AND MODELING OF SINGLE MOLECULE MOTION IN LIVING NEURONES
活体神经元中单分子运动的定量检查和建模
  • 批准号:
    G0802613/1
  • 财政年份:
    2009
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
An analysis of synaptic plasticity at single synapses using the photolytically active AMPA receptor antagonist ANQX.
使用光解活性 AMPA 受体拮抗剂 ANQX 分析单个突触的突触可塑性。
  • 批准号:
    G0701480/1
  • 财政年份:
    2008
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
An investigation of action potential triggered calcium release from a lysosomal store in hippocampal neurones
动作电位的研究触发海马神经元溶酶体储存的钙释放
  • 批准号:
    G0501572/1
  • 财政年份:
    2006
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant

相似海外基金

Fractionated photoimmunotherapy to harness low-dose immunostimulation in ovarian cancer
分段光免疫疗法利用低剂量免疫刺激治疗卵巢癌
  • 批准号:
    10662778
  • 财政年份:
    2023
  • 资助金额:
    $ 39.65万
  • 项目类别:
Endoscopic Ultrasound-guided In Vivo Confocal Laser Endomicroscopy as an Imaging Biomarker for the Accurate Risk Stratification of Intraductal Papillary Mucinous Neoplasms
内镜超声引导体内共聚焦激光内镜作为成像生物标志物,用于导管内乳头状粘液性肿瘤的准确风险分层
  • 批准号:
    10638754
  • 财政年份:
    2023
  • 资助金额:
    $ 39.65万
  • 项目类别:
Melanocortin-3 receptor in feeding and anxiety neural circuits
进食和焦虑神经回路中的 Melanocortin-3 受体
  • 批准号:
    10662026
  • 财政年份:
    2023
  • 资助金额:
    $ 39.65万
  • 项目类别:
Multi-probe minimally invasive endomicroscope
多探头微创内窥镜
  • 批准号:
    10604023
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
Top‐Down Control of Isolation‐Induced Aggression Through mPFC Tac2+ Interneurons
上-下隔离控制-通过 mPFC Tac2 中间神经元诱导攻击
  • 批准号:
    10674483
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
MC3R inhibition as a strategy to maintain weight loss in obesity
MC3R 抑制作为肥胖患者维持体重减轻的策略
  • 批准号:
    10542486
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
Neural mechanisms of taste and metabolic state integration in the brainstem
脑干味觉和代谢状态整合的神经机制
  • 批准号:
    10524319
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
Examining Neurocircuit and Behavioral Effects in a Developmental Model for Indirect Pathway Hypofunction
检查间接通路功能障碍发育模型中的神经回路和行为效应
  • 批准号:
    10687115
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
Multi-probe minimally invasive endomicroscope
多探头微创内窥镜
  • 批准号:
    10898521
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
Examining Neurocircuit and Behavioral Effects in a Developmental Model for Indirect Pathway Hypofunction
检查间接通路功能障碍发育模型中的神经回路和行为效应
  • 批准号:
    10449771
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了