Endothelial Cell Adhesion and Function on Smooth Muscle
内皮细胞对平滑肌的粘附和功能
基本信息
- 批准号:7769550
- 负责人:
- 金额:$ 27.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2012-02-28
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAffectAnti-Inflammatory AgentsAnti-inflammatoryArteriesAtherosclerosisAtomic Force MicroscopyBasement membraneBlocking AntibodiesBlood VesselsCell AdhesionCell Adhesion MoleculesCell Culture SystemCell Culture TechniquesCell LineCell physiologyCell-Matrix JunctionCellsCoculture TechniquesComplicationDataDevelopmentElasticityEndothelial CellsEndotheliumExposure toExtracellular MatrixExtracellular Matrix ProteinsFc ReceptorFibronectinsFocal AdhesionsGene ExpressionGene ProteinsHourHumanImmunofluorescence ImmunologicIn VitroInflammationInflammatoryIntegrinsLamininLeukocytesLigandsLong-Term EffectsMeasuresMechanicsModelingNuclear TranslocationPermeabilityPhenotypePlasticsPlayProductionPropertyProteinsRegulationRelative (related person)ResearchReverse Transcriptase Polymerase Chain ReactionRoleSmooth MuscleSmooth Muscle MyocytesSourceStem cellsStress FibersStretchingSurfaceTestingThrombosisTimeTissue EngineeringUmbilical Cord BloodVascular GraftVeinsWestern Blottingcell growthcell typecellular transductiondesigninsightmonolayernoveloccludinpolyacrylamide gelspressureprotein expressionreceptorrepairedresearch studyresponseshear stresstensintranscription factorvascular endothelial cadherin-2
项目摘要
DESCRIPTION (provided by applicant): In order to establish a functional endothelium for tissue engineered arteries, we developed a novel co-culture model in which human endothelial cells (EC) form a confluent monolayer on quiescent smooth muscle cells (SMC). The co-culture model is a simplified representation of a blood vessel that permits rapid and efficient examination of a large number of experimental variables. Strong adhesion develops between EC and SMC, SMC are more differentiated in co-culture, and human co-cultures can be maintained for as long as 30 days. Integrins play an important role in endothelial force transduction. Our preliminary data suggest that EC cultured on extracellular matrix produced by SMC produce fibrillar adhesions rather than focal adhesions observed when ECs adhere to rigid substrates. Further, EC in co-culture show a reduced oxidative and inflammatory state relative to EC cultured on plastic suggesting a shift in the type of adhesion and integrins involved during co-culture may affect the function of endothelium. The shift in the type of adhesion can influence integrins involved in adhesion during co- culture and the subsequent function of ECs. To properly design tissue engineered vessels that produce appropriate EC function, it is necessary to understand the effect of EC adhesion to the matrix overlying SMC upon EC function following exposure to flow. Thus, we will test the hypotheses that (1) in co-culture, fibrillar adhesion formation and the elastic modulus of SMCs influence specific extracellular matrix proteins and integrins involved in EC adhesion; (2) fibrillar adhesions promote an anti-inflammatory and anti- thrombotic EC phenotype under static and flow conditions by regulating the level of the transcription factor KLF2, and (3) a combination of co-culture and pulsatile shear stresses lowers the permeability of endothelium by reducing the formation of actin stress fibers with fibrillar adhesions. Specific aims of the project are to: (1) identify integrins and adhesion molecules involved in fibrillar and focal adhesion formation between EC and SMC in co-culture; (2) determine the importance of SMC elasticity and fibrillar adhesions upon EC adhesion and function; (3) determine the effect of fibrillar adhesions upon the response of co-cultured EC to flow; and (4) determine the effect of long-term flow upon EC permeability in co-culture. These studies will provide important new information about EC and SMC function interactions that can influence the design of tissue-engineered blood vessels. Endothelial Cell Adhesion & Function on Smooth Muscle There is considerable need for new sources of blood vessels to repair or replace vessels damaged by atherosclerosis. Tissue engineering represents one such opportunity. The proposed research will examine the manner in which the cells that line arteries and veins (endothelial cells) attach and function on surfaces produced by smooth muscle cells. The studies will provide new insights into the manner in which these two cells of the vessel wall interact and provide a cell culture system to facilitate development of tissue- engineered arteries.
描述(申请人提供):为了建立组织工程动脉的功能性内皮细胞,我们开发了一种新的共培养模型,在该模型中,人内皮细胞(EC)在静止的平滑肌细胞(SMC)上形成融合单层。共培养模型是血管的简化表示,允许快速有效地检查大量实验变量。EC与SMC之间有很强的粘附性,SMC在共培养中分化较多,人与SMC共培养可维持30天。整合素在内皮力转导中起重要作用。我们的初步数据表明,培养在SMC产生的细胞外基质上的EC在与刚性基质粘连时会产生纤维粘连,而不是局灶性粘连。此外,与塑料上培养的EC相比,共培养的EC表现出较低的氧化和炎症状态,这表明在共培养过程中涉及的黏附和整合素类型的变化可能会影响内皮的功能。黏附类型的改变可能会影响共培养过程中参与黏附的整合素以及随后内皮细胞的功能。为了正确设计产生适当EC功能的组织工程血管,有必要了解EC与覆盖在SMC上的基质之间的黏附对EC功能的影响。因此,我们将检验如下假设:(1)在共培养中,纤维粘连的形成和SMC的弹性模数影响参与EC粘连的特定细胞外基质蛋白和整合素;(2)纤维粘连通过调节转录因子KLF2的水平在静态和流动条件下促进抗炎和抗血栓的EC表型;(3)联合培养和脉动切应力通过减少肌动蛋白应激纤维与纤维粘连的形成来降低内皮的通透性。该项目的具体目标是:(1)确定在共培养中参与EC和SMC之间的纤维粘连和局部粘连形成的整合素和黏附分子;(2)确定SMC弹性和纤维粘连对EC黏附和功能的重要性;(3)确定纤维粘连对共同培养的EC对流反应的影响;以及(4)确定长期流动对共培养EC通透性的影响。这些研究将提供关于EC和SMC功能相互作用的重要新信息,这些相互作用可以影响组织工程血管的设计。血管内皮细胞的黏附和在平滑肌上的功能需要新的血管来源来修复或替换因动脉粥样硬化而受损的血管。组织工程就是这样一个机会。这项拟议的研究将检查动脉和静脉的细胞(内皮细胞)在由平滑肌细胞产生的表面上附着和发挥功能的方式。这些研究将为血管壁的这两个细胞相互作用的方式提供新的见解,并提供一个细胞培养系统,以促进组织工程动脉的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A Truskey其他文献
George A Truskey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A Truskey', 18)}}的其他基金
In Vitro Human Tissue-Engineered Blood Vessel Disease Model of Progeria
早衰症体外人体组织工程血管疾病模型
- 批准号:
9759965 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Vascular, Cardiac, and Lung Alveolar Human Microphysiological Systems for SARS-CoV-2 Drug Screening
用于 SARS-CoV-2 药物筛选的血管、心脏和肺泡人体微生理系统
- 批准号:
10166020 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Developing An In Vitro Human Myobundle Model Of Rheumatoid Arthritis
开发类风湿关节炎的体外人体肌束模型
- 批准号:
9534005 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Systemic Inflammation in Microphysiological Models of Muscle and Vascular Disease
肌肉和血管疾病微生理模型中的全身炎症
- 批准号:
9401783 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Systemic Inflammation in Microphysiological Models of Muscle and Vascular Disease
肌肉和血管疾病微生理模型中的全身炎症
- 批准号:
10009489 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
In Vitro Human Tissue-Engineered Blood Vessel Disease Model of Progeria
早衰症体外人体组织工程血管疾病模型
- 批准号:
10445145 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Systemic Inflammation in Microphysiological Models of Muscle and Vascular Disease
肌肉和血管疾病微生理模型中的全身炎症
- 批准号:
10013428 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
Systemic Inflammation in Microphysiological Models of Muscle and Vascular Disease
肌肉和血管疾病微生理模型中的全身炎症
- 批准号:
10471015 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
In Vitro Human Tissue-Engineered Blood Vessel Disease Model of Progeria
早衰症体外人体组织工程血管疾病模型
- 批准号:
9980460 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
In Vitro Human Tissue-Engineered Blood Vessel Disease Model of Progeria
早衰症体外人体组织工程血管疾病模型
- 批准号:
9929937 - 财政年份:2017
- 资助金额:
$ 27.3万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 27.3万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 27.3万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 27.3万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 27.3万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 27.3万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 27.3万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 27.3万 - 项目类别: