Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research

调整基于人群的癌症研究中不可忽略的缺失数据

基本信息

  • 批准号:
    8077897
  • 负责人:
  • 金额:
    $ 12.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-07 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Measurement of outcomes related to the quality of physical and mental health states in population-based cancer studies has increased in recent years as more and more researchers realize the importance of such endpoints. These endpoints are measured alongside conventional clinical outcomes and for the most part rely on patient self- report. A key problem has been missing data as patients may die or may be too sick to complete the study. This loss of information represents, besides the loss of efficiency, a potentially large threat to validity of the study results. There is strong evidence that such data are not missing at random, and cannot be ignored without introducing bias. Two extreme views on how to deal with incomplete data are (1) to delete cases with incomplete information altogether and (2) to construct complicated joint models for the measurement and missingness processes. These extreme views are surrounded with problems, largely due to the untestable nature of the assumptions one has to make regarding the missingness mechanism. A more versatile methodology that embeds the treatment of incomplete data within a sensitivity analysis is then required. Developing such a methodology necessitates extensive knowledge of biology and epidemiology of cancer. The K01 mechanism will help integrate mentoring and formal basic training in cancer research with prior training in Biostatistics and Population Health by building on a solid foundation in the development of new statistical methodologies for handling missing data. The research plan integrates training and mentoring to study, for example, how baseline and time dependent characteristics impact cancer patients' functional and mental states across time with missing data adjustment. Our approach is to develop a family of non ignorable models with sensitivity parameters that can be interpretable by subject matter experts. A global sensitivity analysis for the proposed non-ignorable models will be developed and implemented in the context of estimation and hypothesis testing using the classical frequentist approach and the Bayesian posterior predictive check principle. And finally, central theoretical questions about the proposed methods will be investigated using both analytic techniques and Monte Carlo simulations. A key goal of this K01 grant mechanism is to improve our ability to help, through collaborations, design complex clinical trials and observational studies in cancer research, analyze the generated data while adjusting for dropouts and missing data, and interpret the findings to public health professionals and the public.
描述(由申请人提供):近年来,随着越来越多的研究人员意识到这些终点的重要性,基于人群的癌症研究中与身心健康状态质量相关的结局测量有所增加。这些终点与常规临床结局一起测量,并且在很大程度上依赖于患者自我报告。一个关键的问题是数据缺失,因为患者可能会死亡或病情过重而无法完成研究。这种信息的损失除了效率的损失之外,还对研究结果的有效性构成了潜在的巨大威胁。有强有力的证据表明,这些数据不是随机缺失的,不能忽视而不引入偏见。关于如何处理不完全数据的两种极端观点是(1)完全删除具有不完全信息的情况和(2)为测量和缺失过程构建复杂的联合模型。这些极端的观点被问题所包围,主要是由于关于缺失机制的假设的不可检验性。然后需要一种更通用的方法,将不完整数据的处理嵌入敏感性分析中。开发这样的方法需要广泛的癌症生物学和流行病学知识。K01机制将有助于将癌症研究方面的指导和正式基本培训与先前在生物统计和人口健康方面的培训结合起来,为开发处理缺失数据的新统计方法奠定坚实的基础。该研究计划整合了培训和指导,以研究例如基线和时间依赖性特征如何在缺失数据调整的情况下影响癌症患者的功能和精神状态。我们的方法是开发一个家庭的非线性模型的敏感性参数,可以解释的主题专家。将使用经典频率论方法和贝叶斯后验预测检查原则,在估计和假设检验的背景下,对拟议的不可验证模型进行全球敏感性分析。最后,中心的理论问题,所提出的方法将使用分析技术和蒙特卡洛模拟。K01资助机制的一个关键目标是提高我们的能力,通过合作帮助设计癌症研究中复杂的临床试验和观察性研究,分析生成的数据,同时调整辍学和缺失数据,并向公共卫生专业人员和公众解释研究结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID TODEM其他文献

DAVID TODEM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID TODEM', 18)}}的其他基金

Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
  • 批准号:
    7933397
  • 财政年份:
    2009
  • 资助金额:
    $ 12.06万
  • 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
  • 批准号:
    7652542
  • 财政年份:
    2008
  • 资助金额:
    $ 12.06万
  • 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
  • 批准号:
    8291020
  • 财政年份:
    2008
  • 资助金额:
    $ 12.06万
  • 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
  • 批准号:
    7361836
  • 财政年份:
    2008
  • 资助金额:
    $ 12.06万
  • 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
  • 批准号:
    7884285
  • 财政年份:
    2008
  • 资助金额:
    $ 12.06万
  • 项目类别:
Statistical Methods for Complex Dependent Dental Data
复杂相关牙科数据的统计方法
  • 批准号:
    6907997
  • 财政年份:
    2005
  • 资助金额:
    $ 12.06万
  • 项目类别:
Statistical Methods for Complex Dependent Dental Data
复杂相关牙科数据的统计方法
  • 批准号:
    7077718
  • 财政年份:
    2005
  • 资助金额:
    $ 12.06万
  • 项目类别:

相似国自然基金

Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
  • 批准号:
    10107393
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Launchpad
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Fellowship
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Research Grant
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
  • 批准号:
    BB/Y007972/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Research Grant
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
  • 批准号:
    2327488
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Standard Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
  • 批准号:
    2337784
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
  • 批准号:
    2334954
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
  • 批准号:
    2349255
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Continuing Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
  • 批准号:
    2349368
  • 财政年份:
    2024
  • 资助金额:
    $ 12.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了