Comprehensive Prognostic Modeling for Esophageal Cancer: A Bayesian Approach
食管癌的综合预后模型:贝叶斯方法
基本信息
- 批准号:7862570
- 负责人:
- 金额:$ 22.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAreaCancer PatientCancer PrognosisCaringCharacteristicsClinicalComplexComplicationDataData AnalysesData SourcesDatabasesDecision MakingDiagnosisDiseaseElderlyEnsureFutureGoalsHealth PolicyHeterogeneityHistologyIncidenceIndividualInstitutionKnowledgeLinkMalignant neoplasm of esophagusMedicareMethodologyMethodsModelingOperative Surgical ProceduresOutcomeOutcome AssessmentPatientsPerformancePhysiciansPopulationPrognostic FactorPropertyProviderQuality of CareRandomizedRegistriesResearchResearch PersonnelRoleSimulateSourceStatistical MethodsStructureTechniquesValidationVariantbasecancer therapydata structuredemographicsdirect applicationdisease characteristiceffective interventionfrailtyimprovedindexingmortalityolder patientoutcome forecastpatient populationpolicy implicationprognosticpublic health relevanceresearch studysimulationsocioeconomicssoftware developmentuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Our long-term objective is to develop accurate and generalizable prognostic models using complex data sources and contribute to improve patient outcome. This study is motivated by the clinical need of developing accurate prognostic models for esophageal cancer and the methodological need of improvement in data analysis with complex data source. Esophageal cancer presents a unique set of challenges that signifies the importance of this effort. First, its relatively low incidence rate makes large randomized experiments difficult to carry out. Large observational database becomes a particularly important source for research. Second, its rising incidence and high mortality rate present an urgent need to accurately identify prognostic factors where effective interventions could be directed. However, due to limitations from either data sources or statistical approaches, the prognostic roles of histology type of the disease, variation in treatments (i.e., the extensiveness of the surgery) and quality of care (using provider volume as a surrogate) and their clinical and health policy implications are hotly debated. Third, despite the availability of advanced statistical methods, such as mixed effects models, to handle a key aspect of data complexity from large databases - the heterogeneity due to clustering - few prognostic models are built upon these methods. This is partly due to the lack of guidance on how to best model the clustered data structure. Questions regarding whether, by how much, and under which setting such advanced data structure modeling would improve the accuracy of the prognostic model remain to be answered. The goal of this study is to improve our understanding regarding the key variables in esophageal cancer prognosis and to advance our knowledge regarding the validity and importance of the advanced statistical methods in prognostic modeling using complex data sources. It will be achieved through the following specific aims: (1) To develop comprehensive prognostic models for multiple outcomes (including fatal and no-fatal short-term complications, overall and disease-specific long-term survival) following esophageal cancer treatment using SEER-Medicare database. Bayesian mixed-effects models will be used to account for the clustered data structure. The models will be validated internally and externally. (2) To evaluate methods for clustered survival data using statistical simulations. By simulating data of complex structure that mimic real studies, the operational characteristics of several commonly used frailty models for issues of importance to prognostic modeling (including the individuallevel predictor effect estimation, cluster-level predictor effect estimation, heterogeneity assessment and outcome prediction) will be investigated. The performance of the frailty model approach and other techniques including the marginal and stratified approaches will be compared with regard to accuracy in predictors' effects estimation and outcome prediction. Results from this study will have direct applicability in aiding clinical and health policy decision making for the care of elder patients with esophageal cancer. They will also impact positively on future prognostic modeling using registry, administrative, and observational databases. PUBLIC HEALTH RELEVANCE: The proposed studies aim to develop comprehensive prognostic models for esophageal cancer using SEER Medicare linked database and to compare methods for clustered survival data using statistical simulations. The new prognostic models will help to more accurately predict outcomes of esophageal cancer patients with a particular set of disease characteristics and treated with a specific treatment by physicians at a particular institution of certain quality of care. Results from the simulation study will advance our knowledge on the operational characteristics of the related advanced statistical methods and provide guidance for future prognostic modeling efforts using registry, administrative, and observational databases.
描述(由申请人提供):我们的长期目标是利用复杂的数据源开发准确和可推广的预后模型,并有助于改善患者的预后。本研究的动机是建立准确的食管癌预后模型的临床需要,以及在复杂数据来源的数据分析中改进方法学的需要。食管癌呈现出一系列独特的挑战,这表明了这一努力的重要性。首先,其发病率相对较低,使得大型随机实验难以进行。大型观测数据库成为研究的重要来源。其次,其发病率上升和死亡率高,迫切需要准确地确定预后因素,在这些因素中可以进行有效的干预。然而,由于数据来源或统计方法的限制,疾病的组织学类型、治疗方法的变化(即手术的广泛性)和护理质量(使用提供者数量作为替代)及其临床和卫生政策影响的预后作用受到了激烈的争论。第三,尽管有先进的统计方法,如混合效应模型,可以处理大型数据库中数据复杂性的一个关键方面——聚类导致的异质性——但基于这些方法建立的预测模型很少。这在一定程度上是由于缺乏关于如何最好地为集群数据结构建模的指导。关于这种先进的数据结构建模是否、提高多少以及在何种设置下会提高预测模型的准确性的问题仍有待回答。本研究的目的是提高我们对食管癌预后的关键变量的理解,并提高我们对使用复杂数据源进行预后建模的先进统计方法的有效性和重要性的认识。具体目标如下:(1)利用SEER-Medicare数据库建立食管癌治疗后多种结局(包括致死性和非致死性短期并发症、总体生存期和疾病特异性长期生存期)的综合预后模型。贝叶斯混合效应模型将用于解释聚类数据结构。模型将在内部和外部进行验证。(2)通过统计模拟评估聚类生存数据的方法。通过模拟真实研究的复杂结构数据,研究了几种常用的脆弱性模型在预测建模中重要问题(包括个体水平预测效应估计、集群水平预测效应估计、异质性评估和结果预测)的运行特征。将比较脆弱性模型方法和其他技术的性能,包括边际和分层方法在预测者效应估计和结果预测方面的准确性。本研究结果将直接适用于老年食管癌患者的临床护理和卫生政策决策。它们还将对使用注册表、管理和观察数据库的未来预后建模产生积极影响。公共卫生相关性:拟议的研究旨在使用SEER医疗保险关联数据库建立食管癌的综合预后模型,并使用统计模拟比较聚类生存数据的方法。新的预后模型将有助于更准确地预测食管癌患者的预后,这些患者具有特定的疾病特征,并由具有一定护理质量的特定机构的医生进行特定治疗。模拟研究的结果将提高我们对相关先进统计方法的操作特征的认识,并为使用注册表、管理和观测数据库的未来预测建模工作提供指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xi Kathy Zhou其他文献
Longitudinal and multisite sampling reveals mutational and copy number evolution in tumors during metastatic dissemination
纵向和多部位采样揭示了肿瘤在转移扩散过程中的突变和拷贝数进化
- DOI:
10.1038/s41588-025-02204-3 - 发表时间:
2025-06-02 - 期刊:
- 影响因子:29.000
- 作者:
Karena Zhao;Joris Vos;Stanley Lam;Lillian A. Boe;Daniel Muldoon;Catherine Y. Han;Cristina Valero;Mark Lee;Conall Fitzgerald;Andrew S. Lee;Manu Prasad;Swati Jain;Xinzhu Deng;Timothy A. Chan;Michael F. Berger;Chaitanya Bandlamudi;Xi Kathy Zhou;Luc G. T. Morris - 通讯作者:
Luc G. T. Morris
Breast Cancer Incidence Among Asian American Women in New York City: Disparities in Screening and Presentation.
纽约市亚裔美国女性乳腺癌发病率:筛查和表现的差异。
- DOI:
10.1245/s10434-023-14640-8 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Claire M. Eden;Georgia Syrnioti;Joshlyn Johnson;G. Fasano;Solange Bayard;Chase C Alston;Anni Liu;Xi Kathy Zhou;Tammy Ju;Lisa A. Newman;M. Malik - 通讯作者:
M. Malik
ASO Visual Abstract: Breast Cancer Incidence Among Asian American Women in New York City—Disparities in Screening and Presentation
- DOI:
10.1245/s10434-023-14750-3 - 发表时间:
2023-12-10 - 期刊:
- 影响因子:3.500
- 作者:
Claire M. Eden;Georgia Syrnioti;Josh Johnson;Genevieve Fasano;Solange Bayard;Chase Alston;Anni Liu;Xi Kathy Zhou;Tammy Ju;Lisa A. Newman;Manmeet Malik - 通讯作者:
Manmeet Malik
Enlarged Spleen Prior to Allogeneic Transplantation for Myelofibrosis Is Associated with Poor Engraftment and Increased Non-Relapse Mortality
- DOI:
10.1016/j.bbmt.2014.11.452 - 发表时间:
2015-02-01 - 期刊:
- 影响因子:
- 作者:
Usama Gergis;Koen van Besien;Tsiporah B. Shore;Sebastian Mayer;Eric Feldman;Gail Roboz;Ellen Ritchie;Richard Silver;Hanhan Wang;Xi Kathy Zhou;Emil Kuriakose - 通讯作者:
Emil Kuriakose
Single-dose radiotherapy is more effective than fractionation when combined with anti-PD-1 immunotherapy in glioblastoma
在胶质母细胞瘤中,单剂量放疗与抗 PD-1 免疫疗法联合使用时比分次放疗更有效。
- DOI:
10.1038/s41598-025-06909-7 - 发表时间:
2025-07-02 - 期刊:
- 影响因子:3.900
- 作者:
Carolina Cocito;Mylene Branchtein;Xi Kathy Zhou;Tatyana Gongora;Nadia Dahmane;Jeffrey Peter Greenfield - 通讯作者:
Jeffrey Peter Greenfield
Xi Kathy Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xi Kathy Zhou', 18)}}的其他基金
Comprehensive Prognostic Modeling for Esophageal Cancer: A Bayesian Approach
食管癌的综合预后模型:贝叶斯方法
- 批准号:
7740133 - 财政年份:2009
- 资助金额:
$ 22.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.56万 - 项目类别:
Research Grant














{{item.name}}会员




