Stochastic Parameterization of Deep Convection in Short-Range Ensemble Weather Forecasts

短程集合天气预报中深对流的随机参数化

基本信息

  • 批准号:
    NE/D011493/1
  • 负责人:
  • 金额:
    $ 32.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The numerical models that are used to perform weather forecasts and to simulate the earth's climate are incapable of representing explicitly the motions on all space and time scales. Rather, those motions with short scales must be taken into account by using parameterization schemes. A model will contain a number of such schemes, each relating to a particular small-scale physical process that has been omitted. These will include turbulence in the atmospheric boundary layer, gravity waves and deep, moist convection. The convection scheme is the focus in this project since existing representations of deep convection are known to be responsible for some of the largest and most stubborn systematic errors in weather forecasting and climate modelling. Parameterization schemes have traditionally been assumed to be deterministic. Thus, the input to a scheme is taken from the current state of the local, resolved-scale flow and the output is unique for a given input. The philosophy is that the small-scale motions can be considered statistically and an estimate of their ensemble-mean effect is fed back to the large scale. In recent years, this deterministic assumption has been challenged: it may not be valid to neglect the fluctuating component of the small-scale motions, which is capable of interacting strongly with the resolved-scale flow. There is good evidence to suggest that neglect of such fluctuations is not just theoretically unsatisfactory but that it may have significant impacts on model performance. An attractive alternative is to use a stochastic-dynamic parameterization method, which aims to account for the fluctuations. The philosophy of a stochastic scheme is to feed back the effects of a particular small-scale state. The state is chosen at random based on a model for the statistics of the small-scale motions. In June 2005, a workshop on the subject was organized by the European Centre for Medium-range Weather Forecasts. In the Proceedings (p. vii) the current situation is summarized thus: 'Stochastic-Dynamic Parameterization is a relatively new concept, yet one that has potential to impact significantly on all areas of weather and climate forecasting.' Studies to date on the stochastic approach have been consistently encouraging and have tended to fall into two distinct categories. In one category, the stochastic component is treated in relatively simply, but is included as part of a full forecast system and subject to extensive testing. Examples include methods currently being investigated for inclusion in MOGREPS (Met Office Global and Regional Ensemble Prediction System), a new system for operational weather forecasting. In another category, detailed models are constructed for the stochastic component, but testing is typically rather limited and occurs in somewhat idealized configurations. An example is the stochastic convective parameterization of Plant & Craig. The key question for this project, and a major issue for the community, is whether efforts to construct detailed models of the stochastic variability are worthwhile, or whether a simple treatment might be sufficient. In order to answer that question, it is necessary first to implement a detailed, state-of-the-art stochastic parameterization into a full operational forecast system, and second to compare its performance with simpler treatments of variability. Here, the Plant & Craig scheme will be implemented as part of MOGREPS and its performance assessed in parallel with the operational system. When implementing the scheme, and to allow for appropriate comparisons, it is necessary to determine the length and time scales over which the stochastic variability is to be correlated. The project will establish these scales and their sensitivities in a generic context (i.e., these results will not be specific to the Plant & Craig scheme). This is because knowledge of the correlation scales is important for the use of any stochastic-dynamic model.
用于进行天气预报和模拟地球气候的数值模式不能明确地表示所有空间和时间尺度上的运动。相反,那些短尺度的运动必须通过使用参数化方案来考虑。一个模型将包含许多这样的方案,每一个都与一个被忽略的特定小尺度物理过程有关。这些将包括大气边界层中的湍流、重力波和深层潮湿对流。对流方案是该项目的重点,因为已知现有的深对流表示法是天气预报和气候模拟中一些最大和最顽固的系统误差的原因。参数化方案传统上被假定为是确定性的。因此,输入到一个计划是从当前状态的本地,解决规模流和输出是唯一的一个给定的输入。其原理是,小尺度运动可以被认为是统计和估计他们的整体平均效应反馈到大尺度。近年来,这种确定性假设受到了挑战:忽略小尺度运动的波动分量可能是无效的,它能够与分解尺度流强烈相互作用。有很好的证据表明,忽略这种波动不仅在理论上不令人满意,而且可能对模型性能产生重大影响。一个有吸引力的替代方法是使用随机动态参数化方法,其目的是考虑波动。随机方案的哲学是反馈特定小尺度状态的影响。根据小尺度运动的统计模型随机选择状态。2005年6月,欧洲中期天气预报中心组织了一次关于这一主题的讲习班。在会议录(第vii页)中,目前的情况是这样总结的:“随机动力参数化是一个相对较新的概念,但有可能对天气和气候预报的所有领域产生重大影响。“迄今为止,关于随机方法的研究一直令人鼓舞,并倾向于分为两个不同的类别。在一类中,随机分量被相对简单地处理,但被包括作为完整预测系统的一部分,并受到广泛的测试。例如,目前正在研究纳入气象局全球和区域天气预报系统(MOGREPS)的方法,这是一个新的业务天气预报系统。在另一个类别中,为随机分量构建详细的模型,但是测试通常是相当有限的,并且在某种程度上理想化的配置中发生。一个例子是Plant &克雷格的随机对流参数化。这个项目的关键问题,也是社区的一个主要问题,是是否值得努力构建随机变异的详细模型,或者简单的处理是否足够。为了回答这个问题,有必要首先实施一个详细的,国家的最先进的随机参数化到一个完整的业务预报系统,第二,比较其性能与更简单的处理变异。在此,Plant &克雷格方案将作为MOGREPS的一部分实施,其性能将与运行系统同时进行评估。当实施该计划,并允许适当的比较,有必要确定的长度和时间尺度上的随机变异是相关的。该项目将确定这些尺度及其在一般情况下的敏感性(即,这些结果将不特定于Plant &克雷格方案)。这是因为相关尺度的知识对于使用任何随机动态模型都是重要的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system
集合预报系统中 Plant-Craig 随机对流方案的评估
  • DOI:
    10.5194/gmdd-8-10199-2015
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keane R
  • 通讯作者:
    Keane R
A Stochastic Parameterization for Deep Convection Based on Equilibrium Statistics
Evaluation of the Plant-Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)
基于统一模型 (v7.3) 的集合预报系统 MOGREPS-R (24 km) 中 Plant-Craig 随机对流方案 (v2.0) 的评估
Parameterization of Atmospheric Convection - (In 2 Volumes)Volume 1: Theoretical Background and FormulationVolume 2: Current Issues and New Theories
大气对流参数化 -(共 2 卷)第 1 卷:理论背景和公式第 2 卷:当前问题和新理论
  • DOI:
    10.1142/9781783266913_0023
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Plant R
  • 通讯作者:
    Plant R
Large-scale length and time-scales for use with stochastic convective parametrization
用于随机对流参数化的大尺度长度和时间尺度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Plant其他文献

How Corporations E-Source: From Business Technology Projects to Value Networks
  • DOI:
    10.1023/a:1022601607218
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Leslie P. Willcocks;Robert Plant
  • 通讯作者:
    Robert Plant
Cisapride does not alter gastric volume or pH in patients undergoing ambulatory surgery
Predictors of Metabolic Syndrome (MetS) and the benefits of using the MetS diagnosis for people with serious and persistent mental illness
代谢综合征(MetS)的预测因素以及使用 MetS 诊断对患有严重和持续性精神疾病的人的益处
  • DOI:
    10.1016/j.jpsychires.2025.04.023
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Krista Noam;Christopher Bory;Elizabeth Flanagan;Jeannie Wigglesworth;Robert Plant
  • 通讯作者:
    Robert Plant
DEPLOYMENT OF ELECTRONIC PERSONAL HEALTH RECORDS POST-CORONARY INTERVENTION: ANALYSIS OF OUTCOMES AND PATIENT ENGAGEMENT
  • DOI:
    10.1016/s0735-1097(13)61591-0
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Carly Daley;Riddhi Doshi;Robert Plant;Lisa Heral;Michael Mirro
  • 通讯作者:
    Michael Mirro

Robert Plant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Plant', 18)}}的其他基金

Putting the morph into CoMorph: Adapting convection parametrisation for the hard grey zone
将变形放入 CoMorph:针对硬灰色区域调整对流参数化
  • 批准号:
    NE/X018512/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant
Understanding and Representing Atmospheric Convection across Scales - ParaCon Phase 2
理解和表示跨尺度的大气对流 - ParaCon 第 2 阶段
  • 批准号:
    NE/T003871/1
  • 财政年份:
    2019
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant
Revolutionizing Convective Parameterization
彻底改变对流参数化
  • 批准号:
    NE/N013743/1
  • 财政年份:
    2016
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant
GREYBLS: modelling GREY-zone Boundary LayerS
GREYBLS:模拟灰色区域边界层
  • 批准号:
    NE/K011502/1
  • 财政年份:
    2013
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
  • 批准号:
    2336002
  • 财政年份:
    2024
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307150
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307151
  • 财政年份:
    2023
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Standard Grant
CAREER: Toward a Foundation of Over-Parameterization
职业生涯:迈向超参数化的基础
  • 批准号:
    2143493
  • 财政年份:
    2022
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
High power battery characterization for parameterization of battery management systems
用于电池管理系统参数化的高功率电池表征
  • 批准号:
    578447-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Alliance Grants
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
  • 批准号:
    2143215
  • 财政年份:
    2022
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Continuing Grant
Time-Resolved Spectral Parameterization of Neural Activity
神经活动的时间分辨谱参数化
  • 批准号:
    572856-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Ocean convection and mixing: from signature to parameterization
海洋对流和混合:从签名到参数化
  • 批准号:
    RGPIN-2018-03740
  • 财政年份:
    2022
  • 资助金额:
    $ 32.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了