Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
基本信息
- 批准号:2336002
- 负责人:
- 金额:$ 52.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Numerical models that are used for weather forecasting and atmospheric research are extraordinarily complex, yet they still must make some generalized assumptions about atmospheric processes to be computationally efficient. The exchange of mass, energy, and momentum between the earth’s surface and atmosphere is evaluated by an overarching theory that works well for flat and homogeneous terrain, but less so for complex terrain and variable surfaces. In this project, the research team will develop and investigate a new machine-learning model to tackle the challenge of enabling accurate characterization of surface-atmosphere exchange. More than 70% of Earth’s land surface is in complex terrain, and improving on the ability of weather and climate models projections in these areas will be beneficial for weather forecasting, wildfire control, aviation, and military applications. Additionally, the project has several activities that are intended to provide students with the ability to explore the intersection between physics and machine learning.The Monin-Obukhov Similarity Theory (MOST) has served as the primary method for evaluating the exchange of mass, energy, and momentum between the Earth's surface and the atmosphere in weather forecasting and climate projection models over the past decades. However, MOST has well-known deficiencies when applied to complex terrain environments. This project will enable the development of a physics-informed neural network (PINN) model that is expected to provide more accurate estimates of area-aggregate surface fluxes and enable a more straightforward and physically-justified assimilation of sparse observations for parameter estimation. The initial step in the project is the generation of a numerical database of microscale flow in complex terrain via a suite of process-resolving Large Eddy Simulations (LES). This database will then be used to train the physics-informed neural network for surface fluxes (PINN-FLUX). The final task in the project would be an assessment of PINN-FLUX’s ability to evaluate surface fluxes in complex terrain making use of sparse in-situ observations. The assessment task will be conducted using comparisons to modeling and observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于天气预报和大气研究的数值模式非常复杂,但它们仍然必须对大气过程进行一些概括性的假设,以提高计算效率。 地球表面和大气之间的质量、能量和动量的交换是由一个总体理论来评估的,该理论适用于平坦和均匀的地形,但不适用于复杂的地形和可变的表面。 在这个项目中,研究小组将开发和研究一种新的机器学习模型,以应对准确表征表面-大气交换的挑战。 地球70%以上的陆地表面处于复杂地形中,提高这些地区的天气和气候模型预测能力将有利于天气预报、野火控制、航空和军事应用。 此外,该项目还有几项活动,旨在为学生提供探索物理学和机器学习之间交叉点的能力。莫宁-奥布霍夫相似性理论(MOST)在过去几十年中一直是评估天气预报和气候预测模型中地球表面和大气之间质量、能量和动量交换的主要方法。 然而,MOST在应用于复杂地形环境时具有众所周知的缺陷。 该项目将能够开发一个物理信息神经网络(PINN)模型,预计该模型将提供更准确的面积汇总表面通量估计,并能够更直接和物理合理的参数估计稀疏观测同化。 该项目的第一步是通过一套过程解决大涡模拟(LES)生成复杂地形中微尺度流的数值数据库。 然后,该数据库将用于训练用于表面通量的物理信息神经网络(PINN-FLUX)。 该项目的最后一项任务是评估PINN-FLUX利用稀疏的现场观测评估复杂地形地表通量的能力。 该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Giometto其他文献
Wind Extremes over Built Terrain: Characterization and Geometric Determinants
- DOI:
10.1007/s10546-025-00899-9 - 发表时间:
2025-02-07 - 期刊:
- 影响因子:2.200
- 作者:
Jing Wang;Maider Llaguno-Munitxa;Qi Li;Marco Giometto;Elie Bou- Zeid - 通讯作者:
Elie Bou- Zeid
Data-driven met-ocean model for offshore wind energy applications
用于海上风能应用的数据驱动的气象海洋模型
- DOI:
10.1088/1742-6596/2767/5/052005 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kianoosh Yousefi;G. S. Hora;Hongshuo Yang;Marco Giometto - 通讯作者:
Marco Giometto
Path-conservative well-balanced high-order finite-volume solver for the volume-averaged Navier–Stokes equations with discontinuous porosity
用于具有不连续孔隙率的体积平均纳维 - 斯托克斯方程的路径守恒的良好平衡高阶有限体积求解器
- DOI:
10.1016/j.jcp.2025.113978 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:3.800
- 作者:
Jaeyoung Jung;Manuel Schmid;Jacob Fish;Ensheng Weng;Marco Giometto - 通讯作者:
Marco Giometto
Introducing new morphometric parameters to improve urban canopy air flow modeling: A CFD to machine-learning study in real urban environments
- DOI:
10.1016/j.uclim.2024.102173 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Jonas Wehrle;Christopher Jung;Marco Giometto;Andreas Christen;Dirk Schindler - 通讯作者:
Dirk Schindler
Marco Giometto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Giometto', 18)}}的其他基金
CAREER: Characterization of Turbulence in Urban Environments for Wind Hazard Mitigation
职业:城市环境湍流特征以减轻风灾
- 批准号:
2340755 - 财政年份:2024
- 资助金额:
$ 52.39万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404369 - 财政年份:2024
- 资助金额:
$ 52.39万 - 项目类别:
Standard Grant
Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling
合作研究:下降风中的雪输送及其对南极表面质量平衡的影响:观测、理论和数值模拟
- 批准号:
2035078 - 财政年份:2021
- 资助金额:
$ 52.39万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Development of Innovative Statistical Tools to Address Data-Analytic Challenges in Physics and Astronomy
开发创新统计工具来解决物理和天文学中的数据分析挑战
- 批准号:
RGPIN-2021-03985 - 财政年份:2022
- 资助金额:
$ 52.39万 - 项目类别:
Discovery Grants Program - Individual
Development of Innovative Statistical Tools to Address Data-Analytic Challenges in Physics and Astronomy
开发创新统计工具来解决物理和天文学中的数据分析挑战
- 批准号:
RGPIN-2021-03985 - 财政年份:2021
- 资助金额:
$ 52.39万 - 项目类别:
Discovery Grants Program - Individual
Development of Innovative Statistical Tools to Address Data-Analytic Challenges in Physics and Astronomy
开发创新统计工具来解决物理和天文学中的数据分析挑战
- 批准号:
DGECR-2021-00471 - 财政年份:2021
- 资助金额:
$ 52.39万 - 项目类别:
Discovery Launch Supplement
Computational Modeling of the Soot Size Distribution in Turbulent Reacting Flows: Leveraging Data Science Tools to Rapidly Accelerate Physics-Based Model Development and Validation
湍流反应流中烟灰尺寸分布的计算建模:利用数据科学工具快速加速基于物理的模型开发和验证
- 批准号:
2028318 - 财政年份:2020
- 资助金额:
$ 52.39万 - 项目类别:
Standard Grant
Development and validation of quantum physics and chemistry-interpretable deep learning methods in data-driven science
数据驱动科学中量子物理和化学可解释深度学习方法的开发和验证
- 批准号:
20K19876 - 财政年份:2020
- 资助金额:
$ 52.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and Deepening Data-Driven Physics-based CG Animations
开发和深化数据驱动的基于物理的 CG 动画
- 批准号:
19K11990 - 财政年份:2019
- 资助金额:
$ 52.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of multi-scale and multi-physics integrative analysis system for multi-material structures by data assimilation
利用数据同化开发多材料结构多尺度、多物理综合分析系统
- 批准号:
18K03849 - 财政年份:2018
- 资助金额:
$ 52.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of New Strategy and Tools for Simulations and Real Data Analysis in High Energy Physics
高能物理模拟和真实数据分析新策略和工具的开发
- 批准号:
1953215 - 财政年份:2017
- 资助金额:
$ 52.39万 - 项目类别:
Studentship
Development of New Strategy and Tools for Simulations and Real Data Analysis in High Energy Physics
高能物理模拟和真实数据分析新策略和工具的开发
- 批准号:
1808100 - 财政年份:2016
- 资助金额:
$ 52.39万 - 项目类别:
Studentship
Development of a physics-based model of postseismic deformation and methods for parameter estimation based on GPS data
开发基于物理的震后变形模型和基于 GPS 数据的参数估计方法
- 批准号:
15K17748 - 财政年份:2015
- 资助金额:
$ 52.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)