Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting

利用新数据源、数据同化和集合技术进行风暴和洪水预报

基本信息

  • 批准号:
    NE/E002064/1
  • 负责人:
  • 金额:
    $ 32.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Floods in the UK are often caused by extreme rainfall events. At present, weather forecasts can give an indication of a threat of severe storms which might cause flash floods, but are unable to say precisely when and where the downpours will occur, due to the complex range of processes and space-time scales involved. The first stage is to predict the air motions leading to convergence and ascent at a certain location where the precipitation will be initiated, then the development of the precipitation needs to be forecast, and hydrological models used to produce accurate, quantitative, probabilistic flood predictions. Data assimilation is a sophisticated mathematical technique that combines observations with model predictions to give an analysis of the current state of the atmosphere. This analysis may be used to initialise a weather forecast. Although precipitation is well observed by weather radar, attempts to assimilate radar data have had little success; by the time the rain develops the forecast model state is too far from the truth and the air motions are inconsistent with the position of the first radar precipitation echo. We propose to overcome this problem by assimilating new types of data from weather radars. These provide information on the evolving humidity fields and air motions in the lower atmosphere so that the model can accurately track the developing storm before precipitation appears. The model used will be a new Met Office model that can be run with a resolution (i.e., grid-spacing) of order 1-4km. This enables storm-cloud motions to be explicitly calculated, rather than treated as a sub-grid-scale effect. Furthermore, current operational forecast models are only updated with observations every few hours; in the new approach the model will be updated much more frequently. This should yield weather forecasts with improved locations (in space-time) for rainfall events. Initialisation errors are not the only cause of inaccuracies in storm-scale weather forecasts. Models are often run only for a small region of the world, and the data on the boundaries of this area provided from a larger-scale model. These data are known as lateral boundary conditions. Errors in these lateral boundary conditions and modelling errors also contribute to the errors in the forecast. Even if these errors were reduced, the nonlinear nature of the storm dynamics ensures that there is a limit, beyond which the value of deterministic forecasts becomes questionable. After that point it becomes important to determine the uncertainties in the forecast precipitation, so an ensemble approach is required. (An ensemble is a collection of perturbed forecasts that may be considered as a statistical sample of the forecast probability distribution.) The appropriate construction of a storm-scale ensemble is an open question. We propose a structured approach where perturbations will be designed on the basis of physical insight into convective forcing mechanisms. The resulting probabilistic rainfall forecasts can be interfaced to hydrological models used for flood forecasting. For the first time, this project will allow different scales of application of these methods to be supported: ranging from localised flash flooding of small catchments, through to indicative first-alert forecasting with UK-coverage and forecasting of river discharges to the sea. The project will also assess the impacts of improvements in numerical weather prediction on flood forecast performance. In this project we anticipate fruitful interactions between the different disciplines of observations and measurement, meteorology and hydrology. Radar assimilation software development and ensemble forecasts will take place using Met Office models, so improvements can be implemented operationally very easily. The use of operational radars makes this project well placed to take advantage of data from any extreme events occurring during the period of the study.
英国的洪水通常是由极端降雨事件引起的。目前,天气预报可以提示可能引发山洪的强风暴的威胁,但由于过程和时间尺度的复杂性,无法准确预测暴雨会在何时何地发生。第一阶段是预测降水开始的某一地点导致辐合和上升的空气运动,然后需要对降水的发展进行预测,并使用水文模型进行准确,定量,概率的洪水预测。数据同化是一种复杂的数学技术,它将观测与模式预测结合起来,对大气的当前状态进行分析。这种分析可以用来初始化天气预报。虽然气象雷达能很好地观测到降水,但同化雷达数据的努力收效甚微;当降雨发生时,预报模式状态与实际情况相差甚远,空气运动与第一雷达降水回波位置不一致。我们建议通过吸收来自气象雷达的新型数据来克服这个问题。这些数据提供了低层大气湿度场和空气运动的演变信息,使模式能够在降水出现之前准确地跟踪风暴的发展。所使用的模型将是一个新的气象局模型,可以以1-4公里的分辨率(即网格间距)运行。这使得风暴云的运动能够被明确地计算出来,而不是被当作亚网格尺度的效应来处理。此外,目前的业务预报模式每隔几小时才根据观测资料更新一次;在新的方法中,模型将更频繁地更新。这将产生具有降雨事件改进位置(时空)的天气预报。初始化错误并不是风暴尺度天气预报不准确的唯一原因。模型通常只针对世界上的一个小区域运行,该区域边界上的数据来自一个更大尺度的模型。这些数据被称为横向边界条件。这些侧向边界条件的误差和模拟误差也会导致预报的误差。即使这些误差减少了,风暴动力学的非线性特性也会有一个限制,超过这个限制,确定性预报的价值就会受到质疑。在此之后,确定预报降水的不确定性就变得很重要了,因此需要采用集合方法。(集合是扰动预测的集合,可视为预测概率分布的统计样本。)风暴尺度集合的适当构建是一个悬而未决的问题。我们提出了一种结构化的方法,其中将根据对对流强迫机制的物理见解设计扰动。由此产生的概率降雨预报可以与用于洪水预报的水文模型相结合。该项目将首次支持这些方法的不同规模的应用:从小型集水区的局部山洪暴发,到英国范围内的指示性预警预报和河流入海流量预报。该计划亦会评估数值天气预报的改进对洪水预报性能的影响。在这个项目中,我们期望在观测和测量、气象学和水文学的不同学科之间进行富有成效的互动。雷达同化软件的开发和集合预报将使用气象局的模型进行,因此改进可以很容易地在操作上实施。作战雷达的使用使该项目能够很好地利用研究期间发生的任何极端事件的数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Illingworth其他文献

Electrification of anvil clouds
砧状云的电气化
  • DOI:
    10.1038/340021a0
  • 发表时间:
    1989-07-06
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Anthony Illingworth
  • 通讯作者:
    Anthony Illingworth
Growth of large hailstones
大冰雹的生长
  • DOI:
    10.1038/337691a0
  • 发表时间:
    1989-02-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Anthony Illingworth
  • 通讯作者:
    Anthony Illingworth

Anthony Illingworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Illingworth', 18)}}的其他基金

A new technique for measuring global rainfall
测量全球降雨量的新技术
  • 批准号:
    NE/T001216/1
  • 财政年份:
    2019
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
MICROphysicS of COnvective PrEcipitation (MICROSCOPE).
对流降水的微观物理学(显微镜)。
  • 批准号:
    NE/J023124/1
  • 财政年份:
    2013
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
Balloon validation of remotely sensed aerosol properties
遥感气溶胶特性的气球验证
  • 批准号:
    NE/F010338/1
  • 财政年份:
    2008
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
Exploitation of new data sources, data assimilation and ensemble techniques for storm and flood forecasting
利用新数据源、数据同化和集合技术进行风暴和洪水预报
  • 批准号:
    NE/E002137/1
  • 财政年份:
    2007
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
Improvement of stratocumulus representation in models by the use of high resolution observations
通过使用高分辨率观测改进模型中的层积云表示
  • 批准号:
    NE/D005205/1
  • 财政年份:
    2006
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant

相似国自然基金

脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
tau轻子衰变与新物理模型唯象研究
  • 批准号:
    11005033
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
  • 批准号:
    81072676
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
强子对撞机上新物理信号的多轻子末态研究
  • 批准号:
    10675110
  • 批准年份:
    2006
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
  • 批准号:
    2313242
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Discovery Projects
Electron momentum spectroscopy of radiosensitizers New benchmark data for assessing the theoretical models
放射增敏剂的电子动量谱 用于评估理论模型的新基准数据
  • 批准号:
    EP/Y022297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
  • 批准号:
    2901112
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Studentship
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
  • 批准号:
    10991546
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Research Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
The Twelfth (12th) Workshop on Meteorological Sensitivity Analysis and Data Assimilation; Lake George, New York; May 19-24, 2024
第十二届(十二届)气象敏感性分析与资料同化研讨会;
  • 批准号:
    2330336
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Standard Grant
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
  • 批准号:
    10606132
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
  • 批准号:
    DP230100025
  • 财政年份:
    2024
  • 资助金额:
    $ 32.47万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了