Cloud System Resolving Modelling of the Tropical Atmosphere
热带大气云系统解析建模
基本信息
- 批准号:NE/E003885/1
- 负责人:
- 金额:$ 30.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The tropics are often described as the engine room of the Earth's climate system, powering the global circulations of the atmosphere and oceans. Absorption of sunlight heats the land and ocean surfaces strongly at low latitudes, producing convection that carries the energy from the surface into the atmosphere. Except over the deserts, the convection generates deep clouds that transport moisture evaporated from the ocean into the upper atmosphere. When these clouds rain, the release of 'latent heat' by condensing water produces further heating that drives the weather systems of the tropics and influences the winds all around the globe. But such deep convective clouds rarely exist in isolation; they are almost always organised into structures ranging from squall lines and cloud clusters to tropical storms, hurricanes and super-clusters; and convection varies on a wide range of timescales from that of an individual cloud element (hours), through the daily cycle to a plethora of waves with periods ranging up to the intra-seasonal oscillation, which can propagate around the world in 30-60 days. The tropical atmosphere thus organises itself on a huge range of space and timescales; the effect on the climate system is very different from that of random, or disorganised turbulence so that all these scales should be represented in a computer model if it is to reproduce the real world accurately. Until now, many of these effects have had to be represented in a highly simplified way, through a process known as parametrization. This tries to mimic the effect of the convection on the scales smaller than those represented explicitly in the model. The trouble is that across the cloud system from a few to a few hundreds of kilometres there is no preferred scale, and these scales span the range from those that are 'sub-grid' and therefore need parametrization to those which are resolved by the model. Even with the availability of modern supercomputers, this transition from parametrization to resolved motion takes place at around 100km in the latest climate models. All of the structures that occur in the real world below this scale are parametrized, so a completely artificial break occurs between what is resolved and what is parametrized. To compound the problem, the parametrization assumes that organization on scales which cannot be resolved is not important for determining the properties of the convection or its influence on the large-scale flow. But there is mounting evidence that this creates all sorts of problems in the models. Several decades have been invested in developing convection parametrizations and even after all this time and effort no fully satisfactory solution has been found. We therefore propose to take a radical but entirely logical approach to this problem. It is now possible to run models that do resolve convective systems explicitly (at least down to scales of around 1km) over very large domains that encompass all of the important scales mentioned above. Such cloud system resolving models provide a new tool for understanding how convection really works and organises itself, and how it should be parametrized in climate models. Our proposal links these models with new data from satellites and from the surface that will give us an unprecedented view of the evolution of clouds and rain-producing systems. We will bring this unique combination of modelling and observations to bear on what is regarded as one of the most fundamental problems in weather and climate. The results of the work will inform the development of a new generation of more accurate atmospheric models that will find employment in both climate prediction and weather forecasting.
热带地区经常被描述为地球气候系统的引擎室,为全球大气和海洋的循环提供动力。在低纬度地区,阳光的吸收会强烈加热陆地和海洋表面,产生对流,将表面的能量输送到大气中。除了在沙漠上空,对流会产生深云,将从海洋蒸发的水分输送到高层大气中。当这些云层下雨时,冷凝水释放的“潜热”会产生进一步的加热,从而驱动热带地区的天气系统,并影响全球各地的风。但这种深对流云很少孤立存在;它们几乎总是被组织成各种结构,从狂风线和云团到热带风暴、飓风和超星系团;对流在广泛的时间尺度上变化,从单个云元素的时间(小时),到每天的周期,到周期长到季节内振荡的过多波,可以在30-60天内传播到世界各地。因此,热带大气在巨大的空间和时间尺度上自我组织;对气候系统的影响与随机或无组织湍流的影响非常不同,因此,如果要准确地再现真实世界,所有这些尺度都应该用计算机模型来表示。到目前为止,这些效应中的许多都必须通过一种称为参数化的过程以高度简化的方式来表示。这试图在比模型中明确表示的尺度更小的尺度上模拟对流的影响。问题是,在从几公里到几百公里的整个云系中,没有首选的尺度,这些尺度的范围从‘次网格’的范围,因此需要参数化,到那些通过模型解决的尺度。即使有了现代超级计算机,在最新的气候模型中,从参数化到可分辨运动的这种转变发生在大约100公里的地方。在这个比例以下的真实世界中出现的所有结构都是参数化的,所以在解析的和参数化的之间会发生完全人为的中断。使问题复杂化的是,参数化假定无法解决的尺度上的组织对于确定对流的性质或其对大尺度流动的影响并不重要。但越来越多的证据表明,这在模型中造成了各种各样的问题。几十年来,人们一直在开发对流参数化法,即使在所有这些时间和努力之后,也没有找到完全令人满意的解决方案。因此,我们建议采取激进但完全合乎逻辑的方法来解决这个问题。现在有可能在包含上述所有重要尺度的非常大的区域上运行确实明确地(至少向下分解到1公里左右的尺度)对流系统的模型。这样的云系解析模型为理解对流的真正作用和组织方式,以及如何在气候模型中将其参数化提供了一个新的工具。我们的计划将这些模型与来自卫星和地表的新数据联系起来,这将使我们对云和降雨系统的演变有一个前所未有的看法。我们将利用这种独特的建模和观测组合来处理被认为是天气和气候中最基本的问题之一。这项工作的结果将为开发新一代更准确的大气模型提供信息,这些模型将在气候预测和天气预报中找到用武之地。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The representation of the West African monsoon vertical cloud structure in the Met Office Unified Model: an evaluation with CloudSat
- DOI:10.1002/qj.2614
- 发表时间:2015-10
- 期刊:
- 影响因子:8.9
- 作者:T. Stein;D. Parker;R. Hogan;C. Birch;C. Holloway;G. Lister;J. Marsham;S. Woolnough
- 通讯作者:T. Stein;D. Parker;R. Hogan;C. Birch;C. Holloway;G. Lister;J. Marsham;S. Woolnough
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Slingo其他文献
Julia Slingo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Slingo', 18)}}的其他基金
Cloud System Resolving Modelling of the Tropical Atmosphere
热带大气云系统解析建模
- 批准号:
NE/E003826/1 - 财政年份:2008
- 资助金额:
$ 30.11万 - 项目类别:
Research Grant
相似国自然基金
基于铁死亡探讨黄芪甲苷调控System/Xc-/GSH/GPX4信号通路在神经损伤性勃起功能障碍治疗中的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
- 批准号:82304982
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
- 批准号:82360947
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内皮细胞机械敏感离子通道Piezo1通过HIF-1α/system Xc-介导BBB破坏在急性脑缺血再灌注损伤中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
- 批准号:2022JJ70123
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Workshop on Future Storm-Resolving Configurations of Community Earth System Model (CESM); Fort Collins, Colorado; Two days in April 2023
社区地球系统模型(CESM)未来风暴解决配置研讨会;
- 批准号:
2242189 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
MCA: Urban-resolving Modeling System - Urban Heat Island, Urban Hydrology, Air Pollution, and Aerosol-Cloud Interaction Nexus
MCA:城市解析建模系统 - 城市热岛、城市水文、空气污染和气溶胶-云相互作用关系
- 批准号:
2322396 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
- 批准号:
2218829 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Research: Towards Better Understanding of the Climate System Using a Global Storm-Resolving Model
合作研究:利用全球风暴解决模型更好地了解气候系统
- 批准号:
2218827 - 财政年份:2022
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Development of a joint machine learning/de novo assembly system for resolving viral quasispecies
开发联合机器学习/从头组装系统来解决病毒准种问题
- 批准号:
10011686 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Collaborative Research: Resolving Physical Conditions of Diffuse Ionized Gas throughout the Milky Way-Magellanic System
合作研究:解决整个银河系-麦哲伦系统中弥散电离气体的物理条件
- 批准号:
2009276 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Proposal: Resolving Physical Conditions of Diffuse Ionized Gas throughout the Milky Way-Magellanic System
合作提案:解决整个银河系-麦哲伦系统扩散电离气体的物理条件
- 批准号:
2009287 - 财政年份:2020
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Pinpointing and Resolving Scalability Culprits Hidden in Different Components of the Whole System Stack
SPX:协作研究:查明并解决隐藏在整个系统堆栈不同组件中的可扩展性问题
- 批准号:
2024253 - 财政年份:2019
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Resolving the discrepancy between molecular simulations and real system of composite materials using data assimilation
利用数据同化解决复合材料分子模拟与真实系统之间的差异
- 批准号:
19K04077 - 财政年份:2019
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)