Development of a joint machine learning/de novo assembly system for resolving viral quasispecies
开发联合机器学习/从头组装系统来解决病毒准种问题
基本信息
- 批准号:10011686
- 负责人:
- 金额:$ 26.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithm DesignAlgorithmsAntiviral AgentsBenchmarkingBioinformaticsChronicChronic HepatitisClassificationClinical TrialsComplexComputer softwareDNA StructureDNA sequencingDataData SetDevelopmentDimensionsEpidemicFailureFrequenciesGeneticGenetic PolymorphismGenetic VariationGenomeGenomicsGenotypeHIVHIV/HCVHaplotypesHealthcareHepatitis BHepatitis B VirusInfection ControlJointsKnowledgeLanguageLanguage DevelopmentLearningLinkLiver diseasesMachine LearningMetagenomicsMethodologyMethodsModelingMolecularMutationNatural Language ProcessingOutcomePatternPerformancePhasePopulationPopulation AnalysisPrivatizationResearch PersonnelResistanceResolutionSamplingSemanticsSerologicalSerotypingSourceSpeedSubstance Use DisorderSupervisionSystemTechniquesTechnologyTestingTrainingTranslatingTrustVaccinesValidationVariantViralViral hepatitisVirionVirusbasechronic infectionco-infectioncommercializationcomputerized toolscontigdesigndrug developmentimprovedinsertion/deletion mutationmachine learning algorithmmachine learning methodmultiple data sourcesneural networknext generation sequencingnovelpathogenpre-clinicalstructural genomicssyntaxtoolviral resistance
项目摘要
PROJECT SUMMARY
Viral hepatitis from hepatitis B (HBV) establishes chronic infections in >250M people worldwide; chronicity is
on the rise, and approximately one-third of the world’s population (2 billion) has serologic evidence of
exposure. HBV coinfection with HCV and HIV is a hidden consequence of the substance use disorder
epidemic. Viral populations have extremely high sequence diversity and rapidly evolve, which explains the
vaccine failure rates and viral resistance to existing therapies and makes discovering lasting therapies
extremely challenging. Next Generation Sequencing (NGS) is the method of choice to assess the intra-host
virus population, termed a “quasispecies”. While a large set of short DNA sequencing reads are acquired that
represent the virions in the quasispecies, computational technologies are limited in their analysis capabilities,
resulting in particularly low resolution of complex HBV genomic structures. Another challenge is assembling
NGS reads representing short fragment of the host genome into full strains (haplotypes) without knowledge of
their true occurrence in the samples. To meet these challenges, GATACA is developing pathogen-specific
bioinformatics software, GAT-ML (GATACA Assembly Tool – machine learning [ML]) to support treatment
discovery and improve infection control. Its specifically designed algorithm utilizes novel ML methodologies
adapted and modified for assisting genome assembly that will allow GAT-ML to reconstruct complete viral
haplotypes and populations by learning the ‘language’ of the sequences. Tailored initially for HBV samples,
GAT and its new ML system will be integrated for feasibility testing in this Phase I with the following Specific
Aims:
1. Specific Aim 1. Build a joint learning system. Train and test natural language processing (NLP) methods on
HBV genetic variation.
2. Specific Aim 2. Implement and test the machine learning methods in GAT (GAT-ML).
We anticipate a working tool for characterizing HBV haplotypes, validated with multi-sourced datasets, and
extensive testing and benchmarking of offline and integrated methods.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johanna C Craig其他文献
Johanna C Craig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johanna C Craig', 18)}}的其他基金
Integrated Desktop Software for Management of Hepatitic C Data
用于管理丙型肝炎数据的集成桌面软件
- 批准号:
8103362 - 财政年份:2010
- 资助金额:
$ 26.72万 - 项目类别:
Integrated Desktop Software for Management of Hepatitic C Data
用于管理丙型肝炎数据的集成桌面软件
- 批准号:
7748898 - 财政年份:2009
- 资助金额:
$ 26.72万 - 项目类别:
Integrated software application for management of Hepatitis C Virus data
用于管理丙型肝炎病毒数据的集成软件应用程序
- 批准号:
8253100 - 财政年份:2009
- 资助金额:
$ 26.72万 - 项目类别:
Integrated software application for management of Hepatitis C Virus data
用于管理丙型肝炎病毒数据的集成软件应用程序
- 批准号:
8440288 - 财政年份:2009
- 资助金额:
$ 26.72万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 26.72万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 26.72万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 26.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Discovery Launch Supplement
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 26.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral