3D Numerical Modelling of Large, Rapid, Violent Geologic Processes

大型、快速、剧烈地质过程的 3D 数值模拟

基本信息

  • 批准号:
    NE/E013589/1
  • 负责人:
  • 金额:
    $ 54.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Meteorite impacts, large long-runout landslides, volcanic collapse, submarine landslip, and the tsunamis generated when such events occur in a marine environment, are part of a family of large, rapid, violent geologic processes that have potentially catastrophic consequences. Public awareness of these phenomena is high, but our fundamental understanding of them is far from complete. This is in large part because such high-energy processes are impossible to simulate on the laboratory scale and they have been difficult and expensive to simulate numerically until now. The aim of the proposed research is to develop an advanced, 3D numerical model for simulating impacts and other violent geologic processes, and to use this model to investigate the poorly understood natural hazards of meteorite impact, large sub-aerial and sub-marine landslip, and impact- and collapse-generated tsunamis, to predict their behaviour, and ultimately to help mitigate their destructive consequences. In recent times, impact cratering has emerged as an influential process in the evolution of the Earth and life as it exists today. It is now believed that impacts caused at least one mass-extinction, the formation of the moon, and possibly created habitats for primitive life and caused the transfer of life across the solar system, via the high-speed ejection of near-surface rocks. The catastrophic role of impact cratering in Earth history and its far-reaching consequences make imperative the need to understand impacts and the hazard that they pose. However, fundamental gaps remain in our knowledge of the impact process. The vast majority of our current understanding is derived from models and experiments where the target material is uniform and the impactor strikes perpendicular to the target surface. In reality, such events are extremely unlikely to occur on Earth; oblique impacts are far more common than near-vertical impacts, and almost nowhere on the Earth can its near-subsurface be considered uniform (for example, 70% of the Earth's surface is covered by water). The effect on the cratering process of the angle of the impactor's trajectory to the target surface, and variations in the composition and strength of the target surface, are poorly understood. Laboratory experiments and preliminary modelling work suggest that both these factors may change substantially the size and shape of the crater, and the amount of hazardous, hot vaporised rock formed during an impact, but sophisticated 3D modelling is required to fully quantify the effects. In this work the necessary impact simulations will be performed to determine the environmental consequences of impacts on Earth for any size asteroid or comet, at any velocity and angle and into any type of target surface. Two other poorly understood geologic processes that are either an immediate consequence of impacts, or involve similar physical processes, are large rock avalanches and tsunamis generated by landslides or impacts. Large rock avalanches travel vast horizontal distances with only a comparatively small vertical drop in height. Their rapid movement and extensive reach makes them a significant natural hazard, despite the rarity of their occurrence. However, the physical explanation for their high mobility has not yet been ascertained, and hence no reliable model exists for predicting their behaviour. Underwater landslides and oceanic impact events can trigger a type of local tsunami with high run-up and potentially devastating consequences. However, the generation, propagation and breaking of these waves are not yet understood, which has led to wildly differing views on the hazard that these types of tsunamis pose. The model developed as part of this research will also be adapted to simulate these processes. The models will be used to investigate how large rock avalanches can travel so much further than small ones, and to reassess the landslide- and impact-tsunami hazard.
陨石撞击、大型长期山体滑坡、火山崩塌、海底山体滑坡以及在海洋环境中发生此类事件时产生的海啸,都是一系列可能造成灾难性后果的大型、快速、猛烈的地质过程的一部分。公众对这些现象的认识很高,但我们对它们的基本理解还远远不完整。这在很大程度上是因为这样的高能过程不可能在实验室规模上进行模拟,而且到目前为止,用数值模拟它们一直是困难和昂贵的。拟议研究的目的是开发一个先进的三维数值模型,用于模拟撞击和其他猛烈的地质过程,并利用该模型调查陨石撞击、大型空中和海底山体滑坡以及撞击和坍塌引起的海啸等鲜为人知的自然灾害,以预测它们的行为,并最终帮助减轻它们的破坏性后果。最近,撞击坑已经成为地球和生命进化中的一个有影响力的过程,就像它今天存在的那样。现在人们认为,撞击导致了至少一次大规模灭绝,即月球的形成,并可能为原始生命创造了栖息地,并通过近地表岩石的高速抛射导致生命在太阳系之间的转移。撞击坑在地球历史上的灾难性作用及其深远的后果使得必须了解撞击及其造成的危险。然而,我们对影响过程的了解仍然存在根本性的差距。我们目前的大部分认识都来自于模型和实验,在这些模型和实验中,靶材是均匀的,冲击器垂直于靶面。事实上,这样的事件极不可能发生在地球上;倾斜撞击比近垂直撞击要常见得多,而且地球上几乎没有任何地方可以认为其近地表是均匀的(例如,地球表面的70%被水覆盖)。冲击器的弹道与目标表面的夹角以及目标表面成分和强度的变化对撞击过程的影响还知之甚少。实验室实验和初步建模工作表明,这两个因素都可能显著改变陨石坑的大小和形状,以及在撞击过程中形成的危险的热汽化岩石的数量,但需要复杂的3D模型来完全量化影响。在这项工作中,将进行必要的撞击模拟,以确定任何大小的小行星或彗星以任何速度和角度撞击地球、以任何类型的目标表面撞击地球的环境后果。另外两个知之甚少的地质过程要么是撞击的直接后果,要么是涉及类似的物理过程,这两个过程是由山体滑坡或撞击引起的大型岩崩和海啸。大型的岩石雪崩水平距离很远,只有一个相对较小的垂直高度下降。它们的快速移动和广泛的覆盖范围使它们成为一种重大的自然灾害,尽管它们很少发生。然而,它们高流动性的物理解释还没有确定,因此没有可靠的模型来预测它们的行为。水下山体滑坡和海洋撞击事件可能会引发一种当地海啸,具有很高的抬高和潜在的破坏性后果。然而,这些海浪的产生、传播和破裂还不清楚,这导致了人们对这些类型的海啸所构成的危险的看法大相径庭。作为这项研究的一部分开发的模型也将被用来模拟这些过程。这些模型将被用来研究大型岩崩为什么会比小型雪崩传播得更远,并重新评估滑坡及其影响的海啸危险。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation
  • DOI:
    10.1016/j.icarus.2015.11.033
  • 发表时间:
    2016-07-15
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Baker, David M. H.;Head, James W.;Potter, Ross W. K.
  • 通讯作者:
    Potter, Ross W. K.
Ganymede crater dimensions - Implications for central peak and central pit formation and development
  • DOI:
    10.1016/j.icarus.2011.10.004
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Bray, Veronica J.;Schenk, Paul M.;Collins, Gareth S.
  • 通讯作者:
    Collins, Gareth S.
Mid-sized complex crater formation in mixed crystalline-sedimentary targets: Insight from modeling and observation
  • DOI:
    10.1111/j.1945-5100.2008.tb00655.x
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Collins, G. S.;Kenkmann, T.;Wuennemann, K.
  • 通讯作者:
    Wuennemann, K.
The Impact-Cratering Process
  • DOI:
    10.2113/gselements.8.1.25
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Collins, Gareth S.;Melosh, H. Jay;Osinski, Gordon R.
  • 通讯作者:
    Osinski, Gordon R.
Hydrocode simulation of Ganymede and Europa cratering trends - How thick is Europa's crust?
木卫三和木卫二陨石坑趋势的水电编码模拟 - 木卫二的地壳有多厚?
  • DOI:
    10.1016/j.icarus.2013.12.009
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Bray V
  • 通讯作者:
    Bray V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth Collins其他文献

Gareth Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth Collins', 18)}}的其他基金

Planetary Origins and Evolution at Imperial (2019-2022)
帝国理工学院的行星起源与演化(2019-2022)
  • 批准号:
    ST/S000615/1
  • 财政年份:
    2019
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
Expedition 364 Chicxulub: Chicxulub Peak Ring Formation
第 364 次探险队希克苏鲁伯:希克苏鲁伯峰环地层
  • 批准号:
    NE/P011195/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
Planetary Origins and Evolution at Imperial (2016-2019)
帝国理工学院的行星起源与演化(2016-2019)
  • 批准号:
    ST/N000803/1
  • 财政年份:
    2016
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
Bridging funds for consolidated grant ST/J001260/1 (Solar System Origin & Evolution at Imperial)
综合拨款的过渡资金 ST/J001260/1(太阳系起源
  • 批准号:
    ST/M007642/1
  • 财政年份:
    2015
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
Solar System Origin & Evolution at Imperial
太阳系起源
  • 批准号:
    ST/J001260/1
  • 财政年份:
    2012
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
3D Numerical Modelling of Impact Cratering in the Solar System
太阳系撞击坑的 3D 数值模拟
  • 批准号:
    ST/G002452/1
  • 财政年份:
    2009
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant

相似海外基金

Numerical Modelling of Spin Ice Dynamics
旋转冰动力学的数值模拟
  • 批准号:
    2892096
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Studentship
Numerical Relativity modelling of compact binaries involving black holes and dark matter candidates
涉及黑洞和候选暗物质的致密双星的数值相对论建模
  • 批准号:
    2882538
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Studentship
Breaking the ice: Insights into the evolution of plate tectonics from numerical modelling of Europa's ice subduction
破冰:从木卫二冰俯冲的数值模拟中洞察板块构造的演化
  • 批准号:
    2888622
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Studentship
Investigation of Debris Flow behaviour and interaction with mitigation structures using physical and numerical modelling
使用物理和数值模型研究泥石流行为以及与缓解结构的相互作用
  • 批准号:
    2882193
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Studentship
Advanced Numerical Modelling of Offshore Wind Turbine (OWT) Foundations in Sand
沙中海上风力发电机 (OWT) 基础的高级数值模拟
  • 批准号:
    2742385
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Studentship
Multiscale numerical modelling of high-buoyancy plumes in complex terrain
复杂地形高浮力羽流的多尺度数值模拟
  • 批准号:
    567595-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Postdoctoral Fellowships
RII Track-4: NSF: Toward Tracking Organic Carbon Cycling in a Changing Arctic Ocean using Optical Properties and Numerical Modelling
RII Track-4:NSF:利用光学特性和数值模型追踪不断变化的北冰洋中的有机碳循环
  • 批准号:
    2132175
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
Development of high-fidelity numerical modelling approaches with experimental and numerical analysis to accurately predict liquid-fuel sprays characteristics for low-emissions gas turbine combustion
通过实验和数值分析开发高保真数值建模方法,以准确预测低排放燃气轮机燃烧的液体燃料喷雾特性
  • 批准号:
    567957-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Numerical Modelling Methods and Risk Mitigation for Underground Excavation Design in Rockbursting Conditions
岩爆条件下地下开挖设计的数值模拟方法和风险缓解
  • 批准号:
    570326-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical Modelling of Blood Flow and Drug Transport in the Human Blood
人体血液中血流和药物转运的数值模拟
  • 批准号:
    576204-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了