Inhibitors of Tyrosine Kinase-Dependent Signalling as Anti-Cancer Agents

酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物

基本信息

  • 批准号:
    7965095
  • 负责人:
  • 金额:
    $ 95.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Aberrant kinase-depenent signaling is associated with the etiology of several cancers. For this reason, pharmacological agents are being developed to modulate kinase-dependent signaling as potential new anticancer therapeutics. Kinase-dependent signaling involves three critical components: (1) The generation of phosphorylated amino acid residues in key cellular proteins; (2) the recognition and binding to these residues by other signaling proteins and (3) the removal of the amino acid phosphoryl group by cellular phosphatases. For protein-tyrosine kinases (PTKs) these three components consist of: (1) The generation of phosphotyrosyl (pTyr)-containing sequences by PTKs; (2) The recognition and binding to pTyr-containing sequences by src homology 2 (SH2) domains and (3) The destruction of pTyr sequences through phosphate ester hydrolysis by protein tyrosine phosphatases (PTPs). Accordingly, a unifying theme of this project is the design and synthesis of inhibitors directed at each of these three components. In the SH2 domain area, high affinity growth factor receptor-bound protein 2 (Grb2)-binding antagonists are being prepared as potential new therapeutics for erbB-2 and c-Met dependent cancers. As part of a collaborative effort with NCI clinical investigators (Drs. Don Bottaro and Marston Linehan), our Grb2 signaling inhibitors are being examined in cellular studies, where certain of these agents have been shown to block hepatocyte growth factor (HGF)-induced cell migration in Met containing fibroblasts at nanomolar concentrations and to inhibit tubule formation potentially involved in angiogenesis. Using one of our agents, our collaborators have demonstrated inhibition of metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. This supports the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establishes a critical role for Grb2 SH2 domainmediated interactions in the metastatic process. More recently, we have undertaken a complimentary approach to blocking Grb2 function that does not target the SH2 domain. In this approach inhibitors are being developed that block the critical association of Grb2 with its constitutive binding partner, son-of-sevenless (SOS). This work involves the synthesis of peptides and peptide mimetics that bind to the Grb2 Src homology 3 (SH3) domain. Efforts have been been undertaken to develop SH2 domain-directed peptide mimetic inhibitors of Shc-dependent signaling. Shc proteins are non-catalytic SH2 domain-containing docking modules that participate in a variety of cell-regulatory processes associated with proliferation, survival and apoptosis. Shc as well as Grb2 proteins are particularly important for down stream signaling of PTKs, where they have been shown to link activation of the cytoplasmic kinase domains with Ras effectors. Shc has also been shown to serve as a critical angiogenic switch for for the production of vascular endothelial growth factor (VEGF) downstream from the c-Met and ErbB2 RTK oncoproteins, where recruitment of Shc but not Grb2 has been shown to be a required event. Accordingly, disruption of Shc-dependent signaling through blockade of its SH2 domain may afford a new therapeutic approach to cancers reliant on disregulation of such PTKs. It has previously been reported that the 14-mer zeta-chain-T cell receptor peptide, Ac-GHDGLpYQGLSTATK-amide (where pY = pTyr) binds to the Shc SH2 domain with an affinity of Kd = 50 μM. We prepared analogues that contained functionality not present in genetically-encoded amino acids, including N-alkylglycine (peptoid) residues. This work resulted in the discovery of tetrameric peptide peptoid hybrids that exhibit good Shc SH2 domain binding affinity. Further structural optimization of these agents is in progress. In order to conduct cell-based studies, membrane carrier peptide sequences were chemically linked to select high affinity phosphopeptides resulting from these efforts. Preliminary data has indicated that these peptides can block the binding of Shc to activated Met in whole cells at low micromolar concentrations. Overexpression of the serine/threonine polo-like kinase 1 (Plk1) is tightly associated with oncogenesis in several human cancers. Interference with Plk1 function induces apoptosis in tumor cells but not in normal cells. Accordingly, Plk1 is a potentially attractive anticancer chemotherapeutic target. Plk1 possesses a unique phosphopeptidebinding polo box domain (PBD) that is essential for its intracellular localization and mitotic functions. Unlike kinase domains, PBDs are found only in the four members of Plks. Therefore, they represent ideal targets for selectively inhibiting the function of Plks. By examining various PBD-binding phosphopeptides, our NCI collaborator, Dr. Kyung Lee, previously found that a 5mer phosphopeptide PLHSpT specifically interacts with the Plk1 PBD with high affinity, whereas it fails to significantly interact with the PBDs of two closely-related kinases, Plk2 and Plk3. Using a unique "post solid-phase diversification" technique developed in our laboratory, we have optimized the binding affinity of a series of peptides and peptide mimetics. This has resulted in greater than 100-fold enhancement in PBD1 binding affinity. Work is in progress in the laboratory of Dr. Michael Yaffe (MIT) to solve the X-ray crystal structure of our high affinity ligands bound to PBD1 protein. The results of these studies should facilitate a further structure-based optimization of our PBD1-binding inhibitors. In the phosphatase area, inhibitors are being developed against the YopH PTP, which is a pathogenic component of the potential bioterrosim agent Yersinia pestis. This work is being done in collaboration with Drs. Robert Ulrich (USAMRIID) and David Waugh (NCI). A focused library approach has been used wherein two aromatic fragments are joined together by a series of linker segments. This has led to the identification of low micromolar affinity inhibitors that are undergoing further optimization. A parallel approach to inhibitor development is being conducted. The approach is unusual in that it relies on the optimization of YopH substrates to provide structural starting points for inhibitor development. Final inhibitors will be obtained by replacing the phosphate esters by hydrolytically stable bioisosteres. In the area of PTK inhibitor development, the high affinity Sugen Pharmaceuticals- c-Met kinase inhibitor SU11274 is being used as a starting point for structural elaboration. X-ray crystal studies have shown that c-Met binding interactions of SU11274 are confined well within the catalytic cleft. We have synthetically appended linker chains onto the SU11274 core to retain the original binding within the catalytic cleft while at the same time introduction additional binding interactions exterior to catalytic cleft. This work has the potential to advance the development of PTK inhibitors in general.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(11)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TERRENCE BURKE其他文献

TERRENCE BURKE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TERRENCE BURKE', 18)}}的其他基金

Design and Synthesis of HIV Integrase as Potential Anti-
作为潜在抗病毒药物的 HIV 整合酶的设计和合成
  • 批准号:
    7048193
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signaling as Anti-Cancer Agents
酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物
  • 批准号:
    8552595
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signaling as Anti-Cancer Agents
酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物
  • 批准号:
    8937653
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signalling as Anti-Cancer Agents
酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物
  • 批准号:
    8348901
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signaling as Anti-Cancer Agents
酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物
  • 批准号:
    10262021
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Design and Synthesis of HIV Integrase as Potential Anti-AIDS Drugs
HIV整合酶的设计与合成作为潜在的抗艾滋病药物
  • 批准号:
    9343543
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signalling as An
酪氨酸激酶依赖性信号传导抑制剂
  • 批准号:
    7290820
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Design and Synthesis of HIV Integrase as Potential Anti-AIDS Drugs
HIV整合酶的设计与合成作为潜在的抗艾滋病药物
  • 批准号:
    10702293
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Inhibitors of Tyrosine Kinase-Dependent Signaling as Anti-Cancer Agents
酪氨酸激酶依赖性信号传导抑制剂作为抗癌药物
  • 批准号:
    10702292
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:
Design and Synthesis of HIV Integrase as Potential Anti-
作为潜在抗病毒药物的 HIV 整合酶的设计和合成
  • 批准号:
    7337944
  • 财政年份:
  • 资助金额:
    $ 95.22万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 95.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了