An in-silico method for epidemiological studies using Electronic Medical Records
使用电子病历进行流行病学研究的计算机方法
基本信息
- 批准号:8110041
- 负责人:
- 金额:$ 25.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-03 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmerican Cancer SocietyBreast Cancer TreatmentCerealsClinicalClinical DataCohort StudiesColon CarcinomaComputer SimulationComputerized Medical RecordDataData QualityData SourcesDiseaseEpidemiologic StudiesEpidemiologyHealthHospitalsHuman ResourcesInformaticsKnowledgeMalignant NeoplasmsManualsMethodsNatural Language ProcessingPatientsPopulationPreventionRandomized Controlled TrialsRecordsReportingResearchRisk FactorsSelection BiasStatistical MethodsSystemTechnologyTextTimeValidationanticancer researchbasecancer therapycancer typecostprevent
项目摘要
DESCRIPTION: Observational epidemiological studies are effective methods for identifying factors affecting the health and illness of populations, as well as for determining optimal treatments for diseases, such as cancers. However, conventional epidemiological research usually involves personnel-intensive effort (such as manual chart and public records review) and can be very time consuming before conclusive results are obtained. Recently, a large amount of detailed longitudinal clinical data has been accumulated at hospitals' Electronic Medical Records (EMR) systems and it has become a valuable data source for epidemiological studies. However, there are two obstacles that prevent the wide usage of EMR data in epidemiological studies. First, most of the detailed clinical information in EMRs is embedded in narrative text and it is very costly to extract that information manually. Second, EMRs usually have data quality problems such as selection bias and missing data, which require adaptation of conventional statistical methods developed for randomized controlled trials.
In this study, we propose an in silico informatics-based approach for observational epidemiological studies using EMR data. We hypothesize that existing EMR data can be used for certain types of epidemiological studies in a very efficient manner with the help of informatics methods. The informatics-based approach will contain two major components. One is an NLP (Natural Language Processing) based information extraction system that can automatically extract detailed clinical information from EMR and another is a set of statistical and informatics methods that can be used to analyze EMR-derived data. If the feasibility of this approach is proven, it will change the standard paradigm of observational epidemiological research, because it has the capability to answer an epidemiological question in a very short time at a very low cost. The specific aim of this study is to develop an automated informatics approach to extract both fine-grained cancer findings and general clinical information from EMRs and use them to conduct cancer related epidemiological studies. We will perform both casecontrol and cohort studies related to prevention and treatment of breast and colon cancers using EMR data. The informatics approach will be validated on EMRs from two major hospitals to demonstrate its generalizability. Epidemiological findings from our study will be compared to reported findings for validation.
描述:观察性流行病学研究是确定影响人群健康和疾病的因素以及确定癌症等疾病的最佳治疗方法的有效方法。然而,传统的流行病学研究通常涉及人员密集的工作(例如手工图表和公共记录审查),并且在获得结论性结果之前可能非常耗时。近年来,医院电子病历(Electronic Medical Records, EMR)系统积累了大量详细的纵向临床数据,成为流行病学研究的宝贵数据来源。然而,有两个障碍阻碍了电子病历数据在流行病学研究中的广泛使用。首先,电子病历中的大多数详细临床信息都嵌入在叙述文本中,人工提取这些信息的成本非常高。其次,电子病历通常存在数据质量问题,如选择偏差和缺失数据,这需要对随机对照试验开发的传统统计方法进行调整。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUA XU其他文献
HUA XU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUA XU', 18)}}的其他基金
Leveraging Longitudinal Data and Informatics Technology to Understand the Role of Bilingualism in Cognitive Resilience, Aging and Dementia
利用纵向数据和信息学技术了解双语在认知弹性、衰老和痴呆中的作用
- 批准号:
10583170 - 财政年份:2023
- 资助金额:
$ 25.23万 - 项目类别:
Detecting synergistic effects of pharmacological and non-pharmacological interventions for AD/ADRD
检测 AD/ADRD 药物和非药物干预措施的协同效应
- 批准号:
10501245 - 财政年份:2022
- 资助金额:
$ 25.23万 - 项目类别:
Engagement and outreach to achieve a FAIR data ecosystem for the BICAN
参与和推广,为 BICAN 实现公平的数据生态系统
- 批准号:
10523908 - 财政年份:2022
- 资助金额:
$ 25.23万 - 项目类别:
Interactive machine learning methods for clinical natural language processing
用于临床自然语言处理的交互式机器学习方法
- 批准号:
8818096 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
Interactive machine learning methods for clinical natural language processing
用于临床自然语言处理的交互式机器学习方法
- 批准号:
9132834 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8077875 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
7866149 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8589822 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
Real-time Disambiguation of Abbreviations in Clinical Notes
临床记录中缩写词的实时消歧
- 批准号:
8305149 - 财政年份:2010
- 资助金额:
$ 25.23万 - 项目类别:
An in-silico method for epidemiological studies using Electronic Medical Records
使用电子病历进行流行病学研究的计算机方法
- 批准号:
7726747 - 财政年份:2009
- 资助金额:
$ 25.23万 - 项目类别:
相似海外基金
Improving Vaccination Rates Nationwide through Partnerships between the American Cancer Society
通过美国癌症协会之间的合作提高全国范围内的疫苗接种率
- 批准号:
8916862 - 财政年份:2014
- 资助金额:
$ 25.23万 - 项目类别: