High-Throughput Ex Vivo Tumor Cell Motility Assay

高通量离体肿瘤细胞运动测定

基本信息

  • 批准号:
    7926544
  • 负责人:
  • 金额:
    $ 19.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Gliomas are the most aggressive and least successfully treated brain tumors because of their distinctive ability to infiltrate surrounding brain tissue. Even if the bulk of the tumor is removed, migratory cells left behind are not detected by the immune system and resist current cytotoxic therapies. Tumor recurrence then typically involves a rapid and deadly outcome. Understanding the mechanisms of glioma cell migration and designing novel targeting strategies are major challenges in devising more successful therapies against these tumors. Using a highly collaborative, multidisciplinary approach, we will investigate microenvironmental and topographic cues that direct glioma migration on biocompatible nanofibers designed to mimic the substrate topography within the brain. Our specific aims are: 1) optimize a high-throughput in vitro migration assay using electrospun fiber mimicking nanoscale neural tissue topography to determine the potential of this model as a predictive bioassay of motility in ex vivo clinical glioma samples; 2) utilize the high-throughput assay to explore mechanisms that direct migration of clinical glioma cells and molecular factors regulating motility; and 3) assay anti-migratory strategies against cell dispersion to determine the potential of this model as a predictive bioassay of motility in clinical glioma samples. To pursue these aims we will 1) produce high-throughput multiwell cell culture plates with aligned, electrospun nanofiber on the bottom to mimic the aligned structure of white matter, 2) analyze glioma cell migration and characterize the cellular/molecular changes that occur on nanofibers presenting different topographies, 3) investigate potential molecular targets and anti-migratory chemotherapeutics against glioma migration on these devices, and 4) analyze the migration of ex vivo tumor cells and test anti-migratory strategies on those samples to determine the potential of the nanofiber model as a predictive bioassay with immediate clinical relevance. These aims address the goals and scope of the Small Business Catalyst Awards for Accelerating Innovative Research (R43) and are directly relevant to the health mission of the NIH while showing a large commercial potential. We expect that these studies will provide improved, more accurate models of glioma migration, having better predictive power and higher translational potential to improve public health. At the same time, we believe that our research may identify key factors that regulate glioma cell migration, potentially helping to devise a broad range of effective therapies against these devastating tumors. If this high-throughput motility assay is proven successful in this work, then it will provide an innovative tool to researchers from a large variety of backgrounds beyond gliomas. PUBLIC HEALTH RELEVANCE: Malignant brain tumors are highly invasive leading to infiltration of the surrounding normal brain tissue. This makes them extremely difficult or impossible to 'cure' even after surgical removal of the main tumor. Therapeutic targeting of this migrating cell population is thought to be essential if these diseases are to be managed effectively. In order to identify improved therapeutic approaches, we propose an innovative model using biocompatible nanofibers to mimic local aspects of brain structure that regulate glioma cell migration. We will use this novel model to assay clinical samples and predict strategies to prevent tumor recurrence. If proven successful, we propose that this innovative high-throughput device will have a large commercial value as it will help devise novel approaches that lead to improved patient outcomes.
描述(由申请人提供):胶质瘤是最具侵袭性和最不成功治疗的脑肿瘤,因为它们具有浸润周围脑组织的独特能力。即使大部分肿瘤被切除,留下的迁移细胞也不会被免疫系统检测到,并且会抵抗目前的细胞毒性治疗。肿瘤复发通常会导致迅速而致命的后果。了解胶质瘤细胞迁移的机制和设计新的靶向策略是设计更成功的治疗胶质瘤的主要挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jed Kizer Johnson其他文献

Jed Kizer Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jed Kizer Johnson', 18)}}的其他基金

Off-the-Shelf Patch for Repairing Tracheal Stenosis
用于修复气管狭窄的现成补片
  • 批准号:
    9138571
  • 财政年份:
    2016
  • 资助金额:
    $ 19.94万
  • 项目类别:
Tissue Engineered Intestine
组织工程肠
  • 批准号:
    8979048
  • 财政年份:
    2015
  • 资助金额:
    $ 19.94万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了