Targeting Endogenous Inhibitors to Enhance Spinal Axon Regeneration After Injury
靶向内源性抑制剂以增强损伤后脊髓轴突再生
基本信息
- 批准号:8018568
- 负责人:
- 金额:$ 35.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAstrocytesAxonBehaviorBehavioralBindingBiologyBrachial plexus structureCardiovascular systemChondroitin ABC LyaseChondroitin Sulfate ProteoglycanCicatrixContusionsCritiquesDataEnvironmentEnzymesEvaluationFamilyFutureGangliosidesHealthHumanImplantIn VitroInfusion proceduresInjuryKnowledgeLabelLifeLocomotor RecoveryMediatingModelingMolecularMolecular TargetMolecular WeightMorbidity - disease rateMotor NeuronsMyelinMyelin Associated GlycoproteinNatural regenerationNerveNeuraminidaseNeuraxisNeuronsOutcomePeptidesPhosphatidylinositolsPhospholipase CPhysiologicalPolysaccharidesPublishingRattusReagentRecoveryRecovery of FunctionReflex actionResearch Project GrantsResidual stateSialoglycoproteinsSideSignal TransductionSignaling MoleculeSiteSpecificitySpinalSpinal CordSpinal Cord ContusionsSpinal cord injurySpinal nerve structureStudy SectionTestingTherapeuticTimeTreatment EfficacyUnited States National Institutes of Healthautonomic reflexaxon regenerationbasebehavior testcell typecentral nervous system injuryimprovedin vivoinhibitor/antagonistinjuredloss of functionmortalitynerve injuryneurophysiologyneurotrophic factornoveloligodendrocyte-myelin glycoproteinpreclinical studyreceptorregenerativesialoglycolipidstherapeutic developmenttherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Spinal cord injury typically results in life-long loss of nerve function accompanied by profound morbidity and mortality. The current project will use a well-established animal model for human spinal cord injury - spinal cord contusion in the rat - to investigate novel ways to enhance recovery. Our approach is based on our recent discovery that delivery of the enzyme sialidase to the site of experimental spinal cord injuries results in significant enhancements in spinal axon outgrowth, locomotor recovery, and cardiovascular reflex recovery. We now propose to quantify a battery of behavioral, neurophysiological and neuroanatomical outcomes to explore the potential of sialidase, alone and in combination with other treatments, to enhance recovery after spinal cord injury. Our proposal is based on a wealth of data indicating that central nervous system axons have the capacity to regenerate, but are inhibited from doing so by endogenous axon regeneration inhibitors (ARI's), including myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte-myelin glycoprotein on residual myelin and chondroitin sulfate proteoglycan (CSPG) on the glial scar. Each ARI binds to complementary receptors on axons, halting axon outgrowth. Knowledge of ARI's and ARI receptors provides new opportunities to block ARI actions and enhance recovery. For example, the enzyme sialidase destroys sialoglycans, a class of ARI receptors for MAG, and the enzyme chondroitinase ABC (ChABC) destroys CSPG. Anti-ARI therapies, individually or in combination, may enhance axon regeneration and improve functional recovery after spinal cord injury. We now propose to: (i) Test the hypothesis that sialidase delivery to the site of a spinal cord contusion injury in the rat will enhance axon plasticity and/or regeneration, resulting in significant functional recovery; (ii) Test the hypothesis that combining independent anti-ARI therapies, such as sialidase and ChABC, will result in additive or synergistic enhancements of recovery after spinal cord contusion injury, and (iii) Use our knowledge of sialoglycans and sialidases to identify the molecular target(s) of therapeutic sialidase and discover the best sialidase(s) for preclinical studies. PUBLIC HEALTH RELEVANCE: The mature central nervous system, including the spinal cord, is overwhelmingly inhibitory for axon regeneration, severely limiting recovery after traumatic injury and resulting in life-long loss of function. Remarkably, axons have the ability to regenerate, but are inhibited from doing so by molecules that accumulate at injury sites. Destroying or blocking these molecules may permit axons to regenerate, greatly enhancing functional recovery.
描述(由申请人提供):脊髓损伤通常导致终身神经功能丧失,并伴有严重的发病率和死亡率。目前的项目将使用一个完善的人类脊髓损伤动物模型——大鼠脊髓挫伤——来研究增强恢复的新方法。我们的方法是基于我们最近的发现,将唾液酸酶输送到实验性脊髓损伤部位,可以显著增强脊髓轴突生长、运动恢复和心血管反射恢复。我们现在建议量化一系列行为,神经生理学和神经解剖学结果,以探索唾液酸酯酶单独或与其他治疗联合使用的潜力,以增强脊髓损伤后的恢复。我们的建议是基于大量数据,表明中枢神经系统轴突具有再生能力,但被内源性轴突再生抑制剂(ARI)所抑制,包括髓鞘相关糖蛋白(MAG)、Nogo和残留髓鞘上的少突胶质细胞-髓鞘糖蛋白和胶质疤痕上的硫酸软骨素蛋白多糖(CSPG)。每个ARI与轴突上的互补受体结合,阻止轴突的生长。了解ARI和ARI受体为阻断ARI作用和促进康复提供了新的机会。例如,唾液酸酶破坏唾液聚糖,一类MAG的ARI受体,而软骨素酶ABC (ChABC)破坏CSPG。抗ari治疗,单独或联合,可以增强轴突再生和改善脊髓损伤后的功能恢复。我们现在建议:(i)验证唾液酸酶递送到大鼠脊髓挫伤部位会增强轴突可塑性和/或再生,从而导致显著的功能恢复的假设;(ii)验证联合使用独立抗ari疗法(如唾液酸酶和ChABC)将导致脊髓挫伤后恢复的附加或协同增强的假设。(iii)利用我们对唾液酸聚糖和唾液酸酶的知识来确定治疗性唾液酸酶的分子靶点,并发现最佳的唾液酸酶用于临床前研究。公共卫生相关性:成熟的中枢神经系统,包括脊髓,对轴突再生具有压倒性的抑制作用,严重限制了创伤性损伤后的恢复并导致终身功能丧失。值得注意的是,轴突具有再生能力,但被损伤部位积聚的分子所抑制。破坏或阻断这些分子可能允许轴突再生,极大地促进功能恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD L SCHNAAR其他文献
RONALD L SCHNAAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD L SCHNAAR', 18)}}的其他基金
Human siglec ligands control mast cell and eosinophil mediated inflammation
人siglec配体控制肥大细胞和嗜酸性粒细胞介导的炎症
- 批准号:
10331727 - 财政年份:2018
- 资助金额:
$ 35.14万 - 项目类别:
Human siglec ligands control mast cell and eosinophil mediated inflammation
人siglec配体控制肥大细胞和嗜酸性粒细胞介导的炎症
- 批准号:
10097998 - 财政年份:2018
- 资助金额:
$ 35.14万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of astrocytes in behavioral flexibility
星形胶质细胞对行为灵活性的贡献
- 批准号:
24K18245 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Elucidating endolysosomal trafficking dysregulation induced by APOE4 in human astrocytes
阐明人星形胶质细胞中 APOE4 诱导的内溶酶体运输失调
- 批准号:
10670573 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Astrocytes control the termination of oligodendrocyte precursor cell perivascular migration during CNS development
星形胶质细胞控制中枢神经系统发育过程中少突胶质细胞前体细胞血管周围迁移的终止
- 批准号:
10727537 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Accelerating Functional Maturation of Human iPSC-Derived Astrocytes
加速人 iPSC 衍生的星形胶质细胞的功能成熟
- 批准号:
10699505 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Defining cell type-specific functions for the selective autophagy receptor p62 in neurons and astrocytes
定义神经元和星形胶质细胞中选择性自噬受体 p62 的细胞类型特异性功能
- 批准号:
10676686 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Multispectral Imaging of Neurons and Astrocytes: Revealing Spatiotemporal Organelle Phenotypes in Health and Neurodegeneration
神经元和星形胶质细胞的多光谱成像:揭示健康和神经退行性疾病中的时空细胞器表型
- 批准号:
10674346 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
The role of lateral orbitofrontal cortex astrocytes in alcohol drinking
外侧眶额皮质星形胶质细胞在饮酒中的作用
- 批准号:
10823447 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Investigating the role of diazepam binding inhibitor (DBI) in astrocytes and neural circuit maturation
研究地西泮结合抑制剂 (DBI) 在星形胶质细胞和神经回路成熟中的作用
- 批准号:
10567723 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别: