Molecular pathogenesis and treatment of brain arteriovenous malformation
脑动静脉畸形的分子发病机制及治疗
基本信息
- 批准号:8117203
- 负责人:
- 金额:$ 29.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimalsAreaArteriesArteriovenous malformationBase of the BrainBehaviorBloodBlood VesselsBlood capillariesBlood flowBrainCaliberCellsCellular MorphologyCephalicCerebrumCustomDataDevelopmentDiseaseEndothelial CellsEndotheliumEpilepsyFamily memberGenesGeneticHumanImageImaging technologyKnowledgeLateralLesionLifeLigandsMammalsMediatingMediator of activation proteinMicroscopeModelingMolecularMorphologyMusNeurologic DysfunctionsNeurologic SymptomsPathogenesisPathologyPathway interactionsPhotonsPhysiologic arteriovenous anastomosisRecoveryReportingRepressionResearchResolutionRoleRuptureSignal TransductionStrokeStructureTechnologyTetanus Helper PeptideTimeTransgenic MiceVascular Endothelial Growth FactorsVeinsVenousWorkangiogenesiscapillarydesigneffective therapyhuman diseaseinnovationmouse modelnew growthnew therapeutic targetnotch proteinpublic health relevanceresearch studytechnological innovationtransmission process
项目摘要
DESCRIPTION (provided by applicant): Brain arteriovenous malformations (BAVMs) can cause stroke and epilepsy and have no effective treatment. BAVMs are abnormal arteriovenous (AV) shunts that are not believed to regress spontaneously, but rather are prone to dangerous rupture. The cellular and molecular basis of BAVM pathogenesis remains enigmatic. Our long-term objectives are to elucidate the mechanisms of BAVM pathogenesis and to identify novel therapeutic targets to ameliorate this disease. Our general strategy is to take a cross-disciplinary approach fusing cutting-edge mouse genetics and imaging technologies to determine the function of critical molecular pathways that normally regulate AV differentiation, such as Notch signaling, in the pathogenesis of BAVM. We have reported a faithful transgenic mouse model of BAVMs, in which expression of constitutively-active Notch4 (Notch4*) specifically in endothelium elicits hallmarks of BAVMs in immature mice. Furthermore, the areas within the developing brain which grow most rapidly, likely the most angiogenic, were most susceptible to Notch4* effects, suggesting that angiogenesis underlies BAVM formation. Repression of Notch4* expression in severely affected mice resulted in a reversal of neurologic symptoms and recovery from the illness, suggesting that BAVM-like lesions can regress in animals when the molecular cause is removed. We have also reported that Notch activity is increased in the endothelium of human BAVMs, suggesting that Notch signaling may act as a molecular mediator in the human disease. Here we hypothesize that Notch4* during angiogenesis inhibits a capillary number increase, thus promoting the enlargement of capillary diameter, which initiates and sustains AV shunts that catalyze BAVM formation. Our specific aims are designed to elucidate the mechanisms of Notch4*-mediated onset, progression, and regression of BAVM-like lesions in mice. We will combine our mouse model of BAVM with advanced 2-photon imaging to obtain 4D vascular morphology at cellular resolution and blood velocity data in living brains. Our custom-built 2-photon microscope, optimal for cerebral vascular imaging, makes this innovative study possible. Aim1 Examine the angiogenic mechanism by which Notch4* elicits BAVM-like lesions in mice. Aim2 Examine lateral induction as a potential mechanism by which Notch4* propagates Notch signaling in cerebral endothelium. Aim3 Determine the cellular mechanism underlying the regression of AV shunting upon Notch4* repression. Successful completion of this study will conceptually advance our understanding of the cellular and molecular mechanisms of BAVM pathogenesis and help establish new paradigms in the knowledge and treatment of BAVMs. Our establishment of 2-photon high resolution imaging to study BAVM development in living animals will be a major technological innovation for BAVM research at large.
PUBLIC HEALTH RELEVANCE: Brain arteriovenous malformations (BAVMs) are abnormal connections between arteries and veins that can cause stroke and epilepsy. There is currently no effective treatment for BAVMs, which are conventionally believed to not regress, although recent evidence suggests regression is possible. This proposal is designed to determine the molecular pathways underlying BAVM formation and regression, with the hope of identifying novel therapeutic targets to treat this disease.
描述(申请人提供):脑动静脉畸形(BAVMs)可引起中风和癫痫,目前尚无有效治疗方法。bavm是异常的动静脉(AV)分流,不被认为是自发消退,而是容易发生危险的破裂。BAVM发病的细胞和分子基础仍然是谜。我们的长期目标是阐明BAVM的发病机制,并确定新的治疗靶点来改善这种疾病。我们的总体策略是采用跨学科的方法,融合尖端的小鼠遗传学和成像技术,以确定通常调节AV分化的关键分子途径的功能,如Notch信号,在BAVM的发病机制中。我们已经报道了一种可靠的转基因小鼠bavm模型,其中内皮中特异性表达的组成型活性Notch4 (Notch4*)在未成熟小鼠中引起bavm的标志。此外,发育中的大脑中生长最快的区域,可能是血管生成最多的区域,最容易受到Notch4*的影响,这表明血管生成是BAVM形成的基础。在严重感染的小鼠中,抑制Notch4*的表达导致神经系统症状的逆转和疾病的恢复,这表明当分子原因被去除时,动物的bavm样病变可以消退。我们还报道了Notch活性在人类bavm内皮中升高,这表明Notch信号可能在人类疾病中起分子介质的作用。在这里,我们假设血管生成过程中的Notch4*抑制毛细血管数量的增加,从而促进毛细血管直径的扩大,从而启动并维持催化BAVM形成的AV分流。我们的具体目的是阐明Notch4*介导的小鼠bavm样病变的发病、进展和消退机制。我们将结合我们的小鼠BAVM模型和先进的双光子成像技术,以获得细胞分辨率的4D血管形态和活体大脑的血流速度数据。我们定制的双光子显微镜,最适合脑血管成像,使这项创新研究成为可能。目的研究Notch4*诱导小鼠bavm样病变的血管生成机制。目的2:探讨Notch4*在脑内皮中传播Notch信号的侧向诱导机制。目的:确定Notch4*抑制后AV分流逆转的细胞机制。这项研究的成功完成将从概念上推进我们对BAVM发病机制的细胞和分子机制的理解,并有助于建立BAVM知识和治疗的新范式。我们建立双光子高分辨率成像技术来研究活体动物的BAVM发育,将是BAVM研究的一项重大技术创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Wang其他文献
Rong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Wang', 18)}}的其他基金
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10083767 - 财政年份:2020
- 资助金额:
$ 29.46万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10339385 - 财政年份:2020
- 资助金额:
$ 29.46万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
9917601 - 财政年份:2020
- 资助金额:
$ 29.46万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10614453 - 财政年份:2020
- 资助金额:
$ 29.46万 - 项目类别:
Comparative Effectiveness of Treatments for Acute Myeloid Leukemia in the Elderly
老年人急性髓系白血病治疗的比较疗效
- 批准号:
8693973 - 财政年份:2013
- 资助金额:
$ 29.46万 - 项目类别:
Comparative Effectiveness of Treatments for Acute Myeloid Leukemia in the Elderly
老年人急性髓系白血病治疗的比较疗效
- 批准号:
8583443 - 财政年份:2013
- 资助金额:
$ 29.46万 - 项目类别:
Molecular Pathogenesis of Brain Arteriovenous Malformation
脑动静脉畸形的分子发病机制
- 批准号:
9242700 - 财政年份:2010
- 资助金额:
$ 29.46万 - 项目类别:
Molecular pathogenesis and treatment of brain arteriovenous malformation
脑动静脉畸形的分子发病机制及治疗
- 批准号:
7987203 - 财政年份:2010
- 资助金额:
$ 29.46万 - 项目类别:
Molecular pathogenesis and treatment of brain arteriovenous malformation
脑动静脉畸形的分子发病机制及治疗
- 批准号:
8269939 - 财政年份:2010
- 资助金额:
$ 29.46万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 29.46万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 29.46万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 29.46万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 29.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists