Regulation of SMN and Identification of its Downstream Target
SMN的调控及其下游目标的识别
基本信息
- 批准号:8064286
- 负责人:
- 金额:$ 44.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:2 year old3&apos Untranslated RegionsAPC2 geneAffectAxonBindingBiogenesisBiologyBrain StemCandidate Disease GeneCaspaseCell CycleCell NucleusCessation of lifeCo-ImmunoprecipitationsComplexDataDefectDiseaseElementsGenesGeneticGrowthGrowth FactorHalf-LifeHumanIndiumIndividualInfant MortalityKnockout MiceKugelberg-Welander DiseaseLengthMaintenanceMapsMass Spectrum AnalysisMeasuresMessenger RNAModelingMolecular ProfilingMotor NeuronsMuscleMutateMutationNeuritesNeuronsPathologyPathway interactionsPatientsPhenotypePlayProteinsProteomicsRNARNA SplicingRNA analysisRNA-Binding ProteinsRegulationRespiratory FailureRoleSMN1 geneSMN2 geneSeverity of illnessSiteSpinalSpinal CordSpinal Muscular AtrophyTestingTherapeutic InterventionTranscriptTranslationsUbiquitinationUnited StatesWestern BlottingWorkanaphase-promoting complexaxon growthcrosslinkdeprivationdisease-causing mutationinfant deathinsightinterestloss of functionmRNA Expressionmembermulticatalytic endopeptidase complexneuron apoptosisneuronal survivalnoveloverexpressionpreventprotein complexprotein degradationpublic health relevanceresearch studysurvival motor neuron genesynaptic functionsynaptogenesistherapy designubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant): Spinal Muscular Atrophy (SMA), a disease caused by the mutations of Survival Motor Neuron 1 (SMN1) gene, is the most common genetic cause of infant mortality. Humans have two copies of the SMN gene, the telomeric SMN1, which encodes for a full-length form (FL-SMN), and the centromeric SMN2, which encodes primarily for a rapidly-degraded truncated form (SMN 7) as well as the full-length form. In the most severe form, Type 1 SMA, there are 1 or 2 copies of the SMN2 gene, and patients die within 2 years of age due to respiratory failure. Patients with more copies of the SMN2 gene, however, manifest a less severe form of SMA (Type III SMA). SMA occurs due to decreased amount of FL-SMN protein in spinal motor neurons. Therefore, much of the effort for therapeutic interventions in SMA has focused on increasing the level of FL-SMN protein products. Our preliminary results show that SMN is found in a complex containing an E3 ubiquitin ligase the Anaphase- Promoting Complex (APC) and HuD, a RNA binding protein. The APC targets proteins to the proteasome for degradation whereas HuD stabilizes mRNAs. Furthermore, evidence indicates a role for APC in neuronal survival, axonal growth, and synaptic function, and HuD is involved in the maturation and maintenance of neurons. We also know from previous studies that SMN may be necessary for the transport, stability and/or translation of certain mRNAs in neurites. These data together prompted us to formulate a working model in which: 1) ubiquitination by APC regulates the stability and/or function of SMN or other members of the SMN complex and 2) the putative HuD-SMN-associated mRNAs in axons are important for the growth and survival of motor neurons. In the first part of this application, we will investigate the role of APC in regulation of SMN stability and function. We will first characterize the interaction between APC and SMN in neurons. Then, we will investigate the effect of inhibiting the APC-SMN interaction on the function, stability, localization, of SMN protein. In the second part, we will focus on one axonal SMN target mRNA which is likely to play a role in axon outgrowth. Since there is a tight correlation between the amount of FL-SMN and the severity of disease, understanding the interaction between APC and SMN as well as elucidating the downstream targets of SMN will provide important insights into the biology of SMA and has the potential to generate new treatment options for this disease.
PUBLIC HEALTH RELEVANCE: Spinal muscular atrophy (SMA) is the leading genetic cause of infant deaths in the United States. We propose to investigate the cellular mechanisms of this disease using state of the art proteomics and RNA analysis. Understanding these cellular mechanisms may ultimately be important for designing therapies for SMA.
描述(由申请人提供):脊髓性肌萎缩症(SMA)是一种由运动神经元生存1(SMN 1)基因突变引起的疾病,是婴儿死亡的最常见遗传原因。人类有两个拷贝的SMN基因,端粒SMN 1,编码全长形式(FL-SMN),和着丝粒SMN 2,主要编码快速降解的截短形式(SMN 7)以及全长形式。在最严重的1型SMA中,有1或2个SMN 2基因拷贝,患者在2岁内死于呼吸衰竭。然而,具有更多SMN 2基因拷贝的患者表现出不太严重的SMA形式(III型SMA)。SMA的发生是由于脊髓运动神经元中FL-SMN蛋白的量减少。因此,SMA治疗干预的大部分努力都集中在增加FL-SMN蛋白产物的水平上。我们的初步研究结果表明,SMN是在一个复合物中发现的,该复合物含有E3泛素连接酶,后期促进复合物(APC)和HuD,一种RNA结合蛋白。APC将蛋白质靶向蛋白酶体以进行降解,而HuD稳定mRNA。此外,证据表明APC在神经元存活、轴突生长和突触功能中的作用,并且HuD参与神经元的成熟和维持。我们还从以前的研究中知道,SMN可能是必要的运输,稳定性和/或某些mRNA在神经突的翻译。这些数据共同促使我们制定了一个工作模型,其中:1)APC的泛素化调节SMN或SMN复合物其他成员的稳定性和/或功能,2)轴突中推定的HuD-SMN相关mRNA对运动神经元的生长和存活很重要。在本申请的第一部分中,我们将研究APC在SMN稳定性和功能调节中的作用。我们将首先描述APC和SMN在神经元中的相互作用。然后,我们将研究抑制APC-SMN相互作用对SMN蛋白的功能、稳定性、定位的影响。在第二部分中,我们将集中在一个轴突SMN靶mRNA,这是可能发挥作用的轴突生长。由于FL-SMN的数量与疾病的严重程度之间存在密切相关性,因此了解APC和SMN之间的相互作用以及阐明SMN的下游靶点将为SMA的生物学提供重要见解,并有可能为这种疾病提供新的治疗选择。
公共卫生相关性:脊髓性肌萎缩症(SMA)是美国婴儿死亡的主要遗传原因。我们建议使用最先进的蛋白质组学和RNA分析来研究这种疾病的细胞机制。了解这些细胞机制最终可能对设计SMA疗法很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judith A Steen其他文献
Judith A Steen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judith A Steen', 18)}}的其他基金
Integrated Platform to study Neurodegeneration in Alzheimer’s Disease
研究阿尔茨海默病神经退行性疾病的综合平台
- 批准号:
10185521 - 财政年份:2021
- 资助金额:
$ 44.01万 - 项目类别:
Integrated Platform to study Neurodegeneration in Alzheimer’s Disease
研究阿尔茨海默病神经退行性疾病的综合平台
- 批准号:
10380779 - 财政年份:2021
- 资助金额:
$ 44.01万 - 项目类别:
Integrated Platform to study Neurodegeneration in Alzheimer’s Disease
研究阿尔茨海默病神经退行性疾病的综合平台
- 批准号:
10601102 - 财政年份:2021
- 资助金额:
$ 44.01万 - 项目类别:
Regulation of SMN and Identification of its Downstream Target
SMN的调控及其下游目标的识别
- 批准号:
8449148 - 财政年份:2010
- 资助金额:
$ 44.01万 - 项目类别:
Regulation of SMN and Identification of its Downstream Target
SMN的调控及其下游目标的识别
- 批准号:
8247750 - 财政年份:2010
- 资助金额:
$ 44.01万 - 项目类别:
Regulation of SMN and Identification of its Downstream Target
SMN的调控及其下游目标的识别
- 批准号:
7992686 - 财政年份:2010
- 资助金额:
$ 44.01万 - 项目类别:
Regulation of SMN and Identification of its Downstream Target
SMN的调控及其下游目标的识别
- 批准号:
8642215 - 财政年份:2010
- 资助金额:
$ 44.01万 - 项目类别:
相似国自然基金
3'-甲氧基葛根素生物合成途径中关键甲基转移酶基因的克隆与功能分析
- 批准号:31300258
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
晚期妊娠维持和抑制早产中cAMP信号活化PR的作用机制研究
- 批准号:81300507
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
3'-UTR单核苷酸多态性影响CYP8B1基因表达致胆囊胆固醇结石形成的机制研究
- 批准号:81370561
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
异源杂交多倍化鲫鲤特有性状的转录组及后转录组水平变化规律研究
- 批准号:31360514
- 批准年份:2013
- 资助金额:54.0 万元
- 项目类别:地区科学基金项目
HIF基因3'UTR区SNP参与胰腺癌HIF-1α表达调控的分子机制及功能研究
- 批准号:81302082
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
鼻咽癌转移相关通路分子的microRNA调控机制及3'UTR区可变剪切的作用研究
- 批准号:81372886
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
小鼠精原干细胞中APA位点研究及3'UTR使用频率数据库构建
- 批准号:31301085
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目