Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
基本信息
- 批准号:8178833
- 负责人:
- 金额:$ 18.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-08 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultArchitectureAutologousBehaviorBiocompatibleBiocompatible MaterialsBiologicalBiological ProcessBiomimeticsBioprosthesis deviceBloodBlood ClotBlood coagulationCardiopulmonary PhysiologyCardiovascular PhysiologyCellsCellular biologyCharacteristicsChildChildhoodClimactericComplexCongenital AbnormalityCongenital Heart DefectsConsensusDefectDevelopmentDiseaseEncapsulatedEndothelial CellsEndotheliumEnvironmentExtracellular Matrix ProteinsGelGoalsHeartHeart Valve DiseasesHeart ValvesHeterogeneityHydrogelsInfantLifeLigandsLive BirthLungMechanicsMethodsNatureOperative Surgical ProceduresPathologyPatientsPatternPerformancePolymersPopulationPositioning AttributePropertyRepeat SurgeryResearchStem cellsStructureStructure-Activity RelationshipSurfaceTestingTimeTissue EngineeringTissuesTranslatingTranslationsage relatedaortic valve disorderbasedesignheart valve replacementhemodynamicsinterstitial cellnext generationnoveloperationoutcome forecastpalliativepoly(ethylene glycol)diacrylatepreventrepairedscaffoldsemilunar valvesuccesssurface coating
项目摘要
DESCRIPTION (provided by applicant): Heart defects occur in almost 1 percent of all live births and usually include abnormalities of the semilunar heart valves. Few options exist for treating valve defects; even so, these corrections are only palliative and do not preclude the need for re-operation on the valve later in the patient's life. The prognosis for these patients would be revolutionized by the development of a living, autologous, pediatric tissue engineered heart valve (TEHV). A major hurdle in the development of TEHVs is creating a scaffold with valve-like material behavior and microstructure. Furthermore, most research on TEHVs has focused on achieving design goals that are appropriate for adult heart valves, not those of infants and children. The primary microstructural attributes of the semilunar heart valves (aortic and pulmonary) are their anisotropic nature and their layered structure, which provide valvular interstitial cells (VICs) with heterogeneous pericellular environments. These characteristics are not provided by the polymer mesh scaffolds being investigated for TEHVs, and there is little consensus about optimal strategies to produce acellular leaflet scaffolds. Many groups including ours have investigated natural and synthetic gel-based scaffolds for studies of VIC biology and pathology, but these have generally seeded VICs within or atop homogeneous structures. Therefore, we hypothesize that novel hydrogel-based scaffolds can be prepared using biomaterial fabrication methods to generate TEHV scaffolds that mimic the complex structure, mechanical function, biological heterogeneity, and anti-thrombotic nature of pediatric semilunar valves. Hydrogel biomaterials are biocompatible, have tunable structure and mechanics, can be biofunctionalized, and can easily encapsulate cells. In addition, pediatric heart valves are distinct from adult valves on a mechanical, microstructural, and cellular basis. Furthermore, little is known about the endothelium of pediatric heart valves, even though an intact endothelium is considered necessary for success of TEHVs. Our lab is uniquely positioned to perform this research, as we have characterized age-related differences in valve mechanics and microstructure as well as of tissues and cells from congenitally malformed pediatric semilunar valves. We also have generated novel structures and regions of differential material behavior within PEGDA hydrogels. Our objective is to apply advanced biomaterial strategies for creating pediatric TEHVs. We propose to apply patterning and quasi-layering approaches to develop hydrogel TEHV biomaterial scaffolds with customized structural features that replicate the micro-architecture, material properties, mechanical function, and durability of pediatric semilunar valves (Aim 1). To promote a valve-like enthothelial coating of the pediatric TEHV, we will then evaluate the endothelial characteristics of pediatric semilunar valves and modify the scaffold surface (Aim 2). Employing these advanced hydrogel/biomaterial strategies will generate a novel TEHV scaffold that mimics the biological and mechanical heterogeneity of native semilunar valves, and hasten the translation of this life-changing therapy for pediatric patients with valvular heart disease.
PUBLIC HEALTH RELEVANCE: Heart valve defects are among the most common birth defects, but the available options for surgical repair of these valves are not ideal and require children to have repeat surgery every few years. We propose to develop a hydrogel-based scaffold to be used in tissue engineering a replacement heart valve for children with congenital valve defects. Our goal is to prepare this scaffold in such a way to recreate the complex structure of pediatric heart valves, test the durability of these scaffolds, and coat the surface of the scaffold with endothelial cells to prevent blood clots from forming.
描述(由申请人提供):心脏缺陷发生在所有活产婴儿的近1%,通常包括半月心瓣膜的异常。处理阀门缺陷的选择很少;即便如此,这些矫正也只是治标不治本,并不能排除患者在以后的生活中再次对瓣膜进行手术的需要。活体、自体、儿童组织工程心脏瓣膜(TEHV)的发展将彻底改变这些患者的预后。开发tehv的一个主要障碍是制造一种具有类似阀门的材料性能和微观结构的支架。此外,大多数关于心脏瓣膜的研究都集中在实现适合成人心脏瓣膜的设计目标,而不是婴儿和儿童心脏瓣膜的设计目标。半月瓣(主动脉瓣和肺动脉瓣)的主要微观结构特征是其各向异性和层状结构,这为瓣膜间质细胞(vic)提供了异质性的细胞周围环境。目前所研究的脱细胞小叶支架不具备这些特性,而且对于生产脱细胞小叶支架的最佳策略也没有达成共识。包括我们在内的许多团队已经研究了用于VIC生物学和病理学研究的天然和合成凝胶基支架,但这些支架通常是在均匀结构内部或顶部植入VIC。因此,我们假设可以使用生物材料制造方法制备新型水凝胶基支架,以生成模拟儿童半月瓣复杂结构、机械功能、生物异质性和抗血栓性质的TEHV支架。水凝胶生物材料具有生物相容性、结构和力学可调、生物功能化、易包封细胞等特点。此外,儿童心脏瓣膜在机械、微观结构和细胞基础上与成人瓣膜不同。此外,尽管完整的内皮被认为是tev成功的必要条件,但对儿童心脏瓣膜的内皮却知之甚少。我们的实验室在进行这项研究方面具有独特的优势,因为我们已经描述了先天性畸形儿童半月瓣在力学和微观结构以及组织和细胞方面的年龄相关差异。我们还在PEGDA水凝胶中生成了新的结构和不同材料行为的区域。我们的目标是应用先进的生物材料策略来创建儿科tehv。我们建议采用模式和准分层方法来开发具有定制结构特征的水凝胶TEHV生物材料支架,以复制儿童半月瓣的微结构、材料特性、机械功能和耐用性(Aim 1)。为了促进儿童tev的瓣膜样内皮涂层,我们将评估儿童半月瓣的内皮特性并修改支架表面(目的2)。采用这些先进的水凝胶/生物材料策略将产生一种新的TEHV支架,模仿天然半月瓣的生物学和力学异质性,并加速这种改变儿童瓣膜性心脏病患者生活的疗法的转化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHRYN JANE GRANDE-ALLEN其他文献
KATHRYN JANE GRANDE-ALLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHRYN JANE GRANDE-ALLEN', 18)}}的其他基金
Differential Shear Forces on Endocardial Endothelial Cells Regulate a Fibrotic Spectrum in the Left Ventricular Outflow Tract
心内膜内皮细胞上的差异剪切力调节左心室流出道中的纤维化谱
- 批准号:
10170409 - 财政年份:2018
- 资助金额:
$ 18.37万 - 项目类别:
Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
- 批准号:
8315987 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
Tissue Engineering Strategies: Effects on Valvular Interstitial Cell Metabolism
组织工程策略:对瓣膜间质细胞代谢的影响
- 批准号:
8241919 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8663737 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8250357 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
Tissue Engineering Strategies: Effects on Valvular Interstitial Cell Metabolism
组织工程策略:对瓣膜间质细胞代谢的影响
- 批准号:
8113636 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8086246 - 财政年份:2011
- 资助金额:
$ 18.37万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 18.37万 - 项目类别:
Standard Grant














{{item.name}}会员




