Improving Endoderm Specification with Hybrid Materials and Growth Factors
利用混合材料和生长因子改善内胚层规格
基本信息
- 批准号:8063863
- 负责人:
- 金额:$ 17.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAmericanBiochemicalBiocompatible MaterialsCellsChronicCommitComplexConfocal MicroscopyControlled EnvironmentCoupledCuesDevelopmentEndodermEnvironmentExtracellular MatrixFeedbackFibronectinsFunctional disorderFutureGastrointestinal tract structureGrowth FactorHyaluronic AcidHybridsHydrogelsImplantIntegrinsIntestinesKidneyLiverMapsMass Spectrum AnalysisMeasuresMonitorMyoblastsOrganOrgan DonorOsteoblastsPatternPolymersProcessProductionPropertyProteinsRelative (related person)ScienceScreening procedureSignal TransductionSpectrum AnalysisStem cellsStimulusStructureSulfhydryl CompoundsTechniquesTherapeuticTimeTissue EngineeringTissuesVariantbasecell typecellular engineeringcrosslinkdesignembryonic stem cellimprovedinsightnext generationnovelpoly(ethylene glycol)diacrylatepublic health relevanceregenerative therapyscaffoldspatiotemporalstem cell biologystem cell differentiationstem cell fatesuccess
项目摘要
DESCRIPTION (provided by applicant): Over the past decade, the unique intersection of the fields of stem cell biology and material science have produced a number of key observations about the interaction between stem cells and their surrounding niche. In addition to well-studied growth factors, specific intrinsic properties of the extracellular matrix appear to be sufficient to initiate stem cell differentiation, e.g. more rigid substrates produce myoblast- and osteoblasts-like cell types. However, these materials typically display only a single intrinsic matrix property or they lack the appropriate fibrillar structure, combination with growth factors, or spatiotemporal variations found in matrix during development. As a result, the utility of engineered tissues using these synthetic materials have been somewhat limited. Given the relative spatial and temporal complexity of definitive endoderm-derived tissues, e.g. digestive tract, liver, etc., a more prudent initial approach may be to better mimic the niche via the intrinsic matrix properties that are most germane to the production of definitive endoderm. Using physiologically-relevant combinations of growth factor signals and matrix properties, embryonic stem cells (ESCs) will be monitored for endoderm specification to determine which set of these cues or "design criteria" is most effective. We will then integrate our understanding of these criteria into two "smart," natural-synthetic hybrid biomaterials: 1) a thiolated hyaluronic acid and fibronectin matrix coupled to time-sensitive crosslinking from poly(ethylene glycol)-diacrylate to yield temporal variations of these intrinsic properties and 2) an interpenetrating polymer- fibronectin network to create spatial gradients and features having specific intrinsic matrix properties. Both materials will create dramatically more complex microenvironments compared to current biomaterials as well as better mimic the endoderm niche, which may improve ESC-to-endoderm differentiation. Novel techniques, such as force mapping spectroscopy, will aid in our characterization of these materials' biophysical and biochemical properties and will feedback into material design to create natural-synthetic hybrid substrates that are best-suited for ESCs. These insights will provide both a first set of clear-cut design criteria for the scaffolds as well as develop a process to create future therapeutic biomaterials.
PUBLIC HEALTH RELEVANCE: Over 30 million Americans suffer from some form of chronic dysfunction of a definitive endoderm-derived organ, e.g. digestive tract, kidney, liver, etc., and given a lack of donor organs, the need to develop long-term organ replacement strategies is vital. Engineered tissues have been proposed as a means of dealing with this crisis, where embryonic stem cells would be grown into a tissue and subsequently implanted in the body to alleviate the dysfunction. Previous attempts, however, have had limited success in developing such tissues, likely since they do not address the intrinsic properties of the surrounding environment, which are known to direct stem cells into specific types of adult tissues.
描述(由申请人提供):在过去的十年中,干细胞生物学和材料科学领域的独特交叉产生了许多关于干细胞与其周围生态位之间相互作用的关键观察结果。除了经过充分研究的生长因子外,细胞外基质的特定内在特性似乎足以启动干细胞分化,例如细胞分化。更坚硬的基质产生成肌细胞和成骨细胞样细胞类型。然而,这些材料通常仅表现出单一的内在基质特性,或者它们缺乏适当的纤维结构、与生长因子的组合或在开发过程中在基质中发现的时空变化。因此,使用这些合成材料的工程组织的效用受到了一定程度的限制。 鉴于定形内胚层衍生组织的相对空间和时间复杂性,例如消化道、肝脏等,更谨慎的初始方法可能是通过与定形内胚层的产生最密切相关的内在基质特性来更好地模拟生态位。使用生长因子信号和基质特性的生理相关组合,将监测胚胎干细胞(ESC)的内胚层规格,以确定哪一组线索或“设计标准”最有效。然后,我们将对这些标准的理解整合到两种“智能”天然合成混合生物材料中:1)硫醇化透明质酸和纤连蛋白基质与聚(乙二醇)二丙烯酸酯的时间敏感交联耦合,以产生这些内在特性的时间变化;2)互穿聚合物-纤连蛋白网络以创建 具有特定内在矩阵属性的空间梯度和特征。与目前的生物材料相比,这两种材料都将创造出更加复杂的微环境,并更好地模拟内胚层生态位,这可能会改善 ESC 向内胚层的分化。力图谱等新技术将有助于我们表征这些材料的生物物理和生化特性,并将反馈到材料设计中,以创建最适合ESC的天然合成混合基材。这些见解将为支架提供第一套明确的设计标准,并开发创建未来治疗性生物材料的工艺。
公共卫生相关性:超过 3000 万美国人患有某种形式的定形内胚层衍生器官的慢性功能障碍,例如:消化道、肾脏、肝脏等,鉴于供体器官的缺乏,制定长期的器官替代策略至关重要。工程组织已被提议作为应对这一危机的一种手段,其中胚胎干细胞将生长成组织,然后植入体内以缓解功能障碍。然而,之前的尝试在开发此类组织方面取得的成功有限,可能是因为它们没有解决周围环境的内在特性,而众所周知,周围环境可以将干细胞引导到特定类型的成体组织中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam J Engler其他文献
Adam J Engler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam J Engler', 18)}}的其他基金
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10404184 - 财政年份:2021
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10152711 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10356891 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
9981229 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10605207 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10819632 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Biophysical Interrogation of Signals that Drive GBM Invasion
驱动 GBM 侵袭的信号的生物物理询问
- 批准号:
10449770 - 财政年份:2020
- 资助金额:
$ 17.15万 - 项目类别:
Developing Adhesome Technology as a Physical Marker of Highly Metastatic Cells
开发粘附体技术作为高度转移细胞的物理标记
- 批准号:
9922219 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Interprofessional Design and Entrepreneurship in Medical Devices at UC San Diego
加州大学圣地亚哥分校医疗器械的跨专业设计和创业
- 批准号:
10621357 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
Interprofessional Design and Entrepreneurship in Medical Devices at UC San Diego
加州大学圣地亚哥分校医疗器械的跨专业设计和创业
- 批准号:
9922286 - 财政年份:2018
- 资助金额:
$ 17.15万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.15万 - 项目类别:
Research Grant