Molecular Mechanisms of DNA repair in Deinococcus radiodurans
耐辐射奇球菌 DNA 修复的分子机制
基本信息
- 批准号:RGPIN-2018-05980
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DNA Double-strand breaks represent the most lethal form of damage in the genome, resulting in genetic loss and/or chromosomal re-arrangement if not properly repaired. Sources of ionizing radiation (IR) responsible for such damage include cosmic radiation, radon and the decay of radioactive material left over from nuclear weapons testing and spent nuclear fuel generated during power production. Not surprisingly, tolerable levels of exposure to such ionizing radiation are exceedingly small for all forms of life. One notable exception is the bacterium Deinococcus radiodurans. Deinococcus is able to withstand a dose of ionizing radiation 1500 times greater than humans can survive and one that would obliterate the E. coli genome 10 times over [Battista 1997]. Remarkably, despite being shattered into hundreds of small DNA fragments, Deinococcus radiodurans readily reassembles a functional genome. This feat has been attributed to the combination of a number of protective mechanisms including the presence of multiple genome copies, characteristic genome structure, and known or novel DNA repair mechanisms. Although traditional repair mechanisms appear to be active in D. radiodurans, the speed and accuracy of repair displayed are inconsistent with all previously characterized pathways [Cox 2005]. The goal of our research is to understand how uncharacterized proteins, implicated in DNA repair, function to permit the amazing DNA repair/assembly capabilities of Deinococcus radiodurans. Understanding the DNA repair strategies utilized to resist extreme IR damage is not only fascinating from a scientific point of view, but also carries great potential for practical utility. Deinococci are of interest for application in bioremediation of toxins from radioactive contaminated environments generated through processing of nuclear fuel [Appukuttan 2006]. In addition, NASA is exploring these organisms with the idea of eventually using information gained to increase protection form cosmic radiation during prolonged space travel. The greatest impact, however, that understanding (and exploiting) DNA repair/assembly capabilities of D. radiodurans resides in the area of synthetic biology. The next frontier in biological sciences is, without doubt, the ability to engineer chromosomes at the truly synthetic level. A major challenge to such endeavours is the ability to efficiently and accurately assemble large, chromosome-sized DNA molecules - Deinococci are well equipped to overcome this limitation.
DNA双链断裂是基因组中最致命的损伤形式,如果不正确修复,会导致遗传丢失和/或染色体重排。 造成这种损害的电离辐射源包括宇宙辐射、氡和核武器试验遗留下来的放射性物质的衰变以及发电过程中产生的乏核燃料。 毫不奇怪,对所有生命形式来说,暴露于这种电离辐射的可容忍水平都非常小。 一个值得注意的例外是耐辐射异常球菌。 异常球菌能够承受的电离辐射剂量是人类生存剂量的1500倍,这种剂量的辐射可以消灭大肠杆菌。大肠杆菌基因组的10倍[Battista 1997]。 值得注意的是,尽管被粉碎成数百个小的DNA片段,但耐辐射奇球菌很容易重组功能基因组。 这一壮举归因于多种保护机制的结合,包括多个基因组拷贝的存在、特征基因组结构以及已知或新型的DNA修复机制。 虽然传统的修复机制在D.对于耐放射性药物,显示的修复速度和准确性与所有先前表征的途径不一致[考克斯2005]。 我们研究的目标是了解与DNA修复有关的未表征蛋白质如何发挥作用,以允许耐辐射球菌具有惊人的DNA修复/组装能力。 理解用于抵抗极端红外损伤的DNA修复策略不仅从科学的角度来看是迷人的,而且具有巨大的实用潜力。 异常球菌在核燃料加工过程中产生的放射性污染环境中毒素的生物修复中具有重要应用[Appukuttan 2006]。 此外,美国宇航局正在探索这些生物体,最终利用获得的信息在长时间的太空旅行中增加对宇宙辐射的保护。然而,最大的影响是理解(和利用)D。抗辐射剂属于合成生物学领域。 毫无疑问,生物科学的下一个前沿是在真正的合成水平上设计染色体的能力。 这种努力的一个主要挑战是有效和准确地组装大的染色体大小的DNA分子的能力-异常球菌很好地克服了这一限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junop, Murray其他文献
Crystallization of the DdrB-DNA complex from Deinococcus radiodurans
- DOI:
10.1107/s1744309112044041 - 发表时间:
2012-12-01 - 期刊:
- 影响因子:0.9
- 作者:
Sugiman-Marangos, Seiji;Junop, Murray - 通讯作者:
Junop, Murray
Junop, Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junop, Murray', 18)}}的其他基金
Molecular Mechanisms of DNA repair in Deinococcus radiodurans
耐辐射奇球菌 DNA 修复的分子机制
- 批准号:
RGPIN-2018-05980 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular Mechanisms of DNA repair in Deinococcus radiodurans
耐辐射奇球菌 DNA 修复的分子机制
- 批准号:
RGPIN-2018-05980 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular Mechanisms of DNA repair in Deinococcus radiodurans
耐辐射奇球菌 DNA 修复的分子机制
- 批准号:
RGPIN-2018-05980 - 财政年份:2019
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular Mechanisms of DNA repair in Deinococcus radiodurans
耐辐射奇球菌 DNA 修复的分子机制
- 批准号:
RGPIN-2018-05980 - 财政年份:2018
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanism of extreme DNA damage resistance in Deinococcus spp.
异常球菌属极端DNA损伤抵抗的分子机制。
- 批准号:
262034-2013 - 财政年份:2017
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Operations and Maintenance Support for a Regional Protein Characterization Facility
区域蛋白质表征设施的运营和维护支持
- 批准号:
RTI-2017-00513 - 财政年份:2016
- 资助金额:
$ 4.23万 - 项目类别:
Research Tools and Instruments
Molecular mechanism of extreme DNA damage resistance in Deinococcus spp.
异常球菌属极端DNA损伤抵抗的分子机制。
- 批准号:
262034-2013 - 财政年份:2016
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanism of extreme DNA damage resistance in Deinococcus spp.
异常球菌属极端DNA损伤抵抗的分子机制。
- 批准号:
262034-2013 - 财政年份:2015
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanism of extreme DNA damage resistance in Deinococcus spp.
异常球菌属极端DNA损伤抵抗的分子机制。
- 批准号:
262034-2013 - 财政年份:2014
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanism of extreme DNA damage resistance in Deinococcus spp.
异常球菌属极端DNA损伤抵抗的分子机制。
- 批准号:
262034-2013 - 财政年份:2013
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Elucidation of Molecular Mechanisms of Child Abuse Stress Focusing on DNA Methylation and Development and Application of Quantitative Methods
以DNA甲基化为重点的儿童虐待应激分子机制阐明及定量方法的发展与应用
- 批准号:
23K16378 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular mechanisms of bacterial immune signaling through DNA damage
通过 DNA 损伤产生细菌免疫信号的分子机制
- 批准号:
10677417 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10581660 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10797632 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Elucidating the molecular mechanisms of structure-selective endonucleases in DNA repair and genome stability
阐明结构选择性核酸内切酶在 DNA 修复和基因组稳定性中的分子机制
- 批准号:
RGPIN-2017-06670 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10330862 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Molecular mechanisms of pathway choice in DNA double strand break repair
DNA双链断裂修复途径选择的分子机制
- 批准号:
10646302 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Delineating molecular mechanisms of DNA repair through protein engineering
通过蛋白质工程描绘 DNA 修复的分子机制
- 批准号:
RGPIN-2019-05721 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Delineating molecular mechanisms of DNA repair through protein engineering
通过蛋白质工程描绘 DNA 修复的分子机制
- 批准号:
RGPIN-2019-05721 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别:
Discovery Grants Program - Individual
Defining the cellular and molecular mechanisms of how toxicants disrupt mitochondrial DNA homeostasis
定义毒物如何破坏线粒体 DNA 稳态的细胞和分子机制
- 批准号:
10291547 - 财政年份:2021
- 资助金额:
$ 4.23万 - 项目类别: