Biostatistics, Data Analysis and Computation (BDAC Core)
生物统计学、数据分析和计算(BDAC 核心)
基本信息
- 批准号:7982613
- 负责人:
- 金额:$ 7.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnalysis of VarianceAnimal ExperimentsAnimalsArtsBiometryBiostatistics CoreCCNE1 geneCellsClinicColorComputer SimulationDataData AnalysesEnvironmentEvaluationFeverFundingGray unit of radiation doseHeatingImageImage AnalysisInduced HyperthermiaInjection of therapeutic agentMagnetismMeasurementMethodsModelingOutcome AssessmentParticle SizePlayProcessProductionPropertyRoleServicesSurvival AnalysisTechniquesTemperatureTestingTimeTissuesToxic effectTranslationsTreatment outcomeTumor VolumeUncertaintyabsorptionbasechemotherapydesignhyperthermia treatmentimaging modalityin vivomagnetic fieldnanoparticlenanoscalenanotherapyperformance testspre-clinicalresearch studyresponsestatisticstreatment effecttumor
项目摘要
The Biostatistics, Data Analysis, and Computation (BDAC) Core will provide the following services to the projects of the Dartmouth CCNE: (1) technological and preclinical data analysis of magnetic NanoPartide (mNP) characterization measurements, such as size, heating evaluation, biodistribufion, etc., using traditional numeric values data as well as innovafive statistical image analyses, (2) statistical analysis of mNP-induced hyperthermia treatment outcomes including toxicity, tumor volume, and survival analysis, (S) modeling and computer simulafion of mNP interacfion with fissue and cells in vivo under an alternating magnefic field (AMF) and predicfion ofthe induced temperature rise in tumors.
Model-based stafisfical techniques will be used for mNP characterization and evaluation. Unlike method driven algorithms, the model-based approach allows the assessment ofthe uncertainty of methods (e.g. through the standard error) and therefore enables statistical significance testing (Projects 1, 3, Nanoparticle Core).
The majority of the mNP characterizafion data, to be derived in the DCCNE will come in the form of images.
Methods of Mulfivariate ANalysis Of VAriance (MANOVA) will be used for modeling and statisfical
comparison of gray scale and color images. To comply with the normal/Gaussian assumption and to
eliminate the differences in images illuminafion and contrast, the logit transformafion will be used (log of the image level intensity with respect to the background). Projects 1, 2, 3, NDPC & TPB cores.
The BDAC Core will evaluate the efficacy ofthe mNP treatment of tumors in the DCCNE Projects through the stafistical analysis of tumor regrowth data and survival analysis. A particular emphasis will be given to the statistical significance assessment of the synergy of the treatments, such as mNP hyperthermia and chemotherapy (Projects 1, 2 & 4).
Modeling and computer simulation of scattering and absorption fields from mNPs will play an important role in choosing the biologically justified conditions for animal experiments, such as the strength of the AMF, injection concentration, magnetic field exposure time, particle size, etc. The numerical assessment of the mNP-induced hyperthermia will precede animal experiments through estimation ofthe specific absorption rate (SAR) inside the tumor and by solving of the bioheat equafion on the nanometer scale (Projects 1, 3, and Nanoparticle Core).
生物统计、数据分析和计算(BDAC)核心将为达特茅斯 CCNE 的项目提供以下服务:(1)使用传统数值数据以及创新的统计图像分析,对磁性纳米颗粒(mNP)表征测量进行技术和临床前数据分析,例如尺寸、加热评估、生物分布等,(2)mNP 诱导的统计分析 热疗治疗结果包括毒性、肿瘤体积和生存分析,(S) 交变磁场 (AMF) 下 mNP 与体内组织和细胞相互作用的建模和计算机模拟,以及肿瘤诱导温度升高的预测。
基于模型的统计技术将用于 mNP 表征和评估。与方法驱动的算法不同,基于模型的方法允许评估方法的不确定性(例如通过标准误差),因此可以进行统计显着性测试(项目 1、3,纳米粒子核心)。
DCCNE 中导出的大多数 mNP 表征数据将以图像的形式出现。
多变量方差分析 (MANOVA) 方法将用于建模和统计
灰度和彩色图像的比较。遵守正态/高斯假设并
为了消除图像照明和对比度的差异,将使用对数变换(图像级别强度相对于背景的对数)。项目 1、2、3,NDPC 和 TPB 核心。
BDAC核心将通过肿瘤再生数据的统计分析和生存分析来评估DCCNE项目中mNP治疗肿瘤的疗效。将特别强调治疗协同作用的统计显着性评估,例如 mNP 热疗和化疗(项目 1、2 和 4)。
mNP 散射和吸收场的建模和计算机模拟将在选择动物实验的生物学合理条件方面发挥重要作用,例如 AMF 强度、注射浓度、磁场暴露时间、颗粒尺寸等。 mNP 引起的高温的数值评估将在动物实验之前通过估计肿瘤内的比吸收率 (SAR) 并求解生物热 纳米尺度的方程(项目 1、3 和纳米颗粒核心)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugene Demidenko其他文献
Eugene Demidenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugene Demidenko', 18)}}的其他基金
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
- 批准号:
10454232 - 财政年份:2021
- 资助金额:
$ 7.93万 - 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
- 批准号:
10669124 - 财政年份:2021
- 资助金额:
$ 7.93万 - 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
- 批准号:
10276838 - 财政年份:2021
- 资助金额:
$ 7.93万 - 项目类别:
Breast Cancer Detection Using Electrical Impedance Measurements
使用电阻抗测量检测乳腺癌
- 批准号:
7663862 - 财政年份:2008
- 资助金额:
$ 7.93万 - 项目类别:
Breast Cancer Detection Using Electrical Impedance Measurements
使用电阻抗测量检测乳腺癌
- 批准号:
7893578 - 财政年份:2008
- 资助金额:
$ 7.93万 - 项目类别:
Breast Cancer Detection Using Electrical Impedance Measurements
使用电阻抗测量检测乳腺癌
- 批准号:
7527236 - 财政年份:2008
- 资助金额:
$ 7.93万 - 项目类别:
Biostatistics, Data Analysis and Computation (BDAC Core)
生物统计学、数据分析和计算(BDAC 核心)
- 批准号:
8310104 - 财政年份:
- 资助金额:
$ 7.93万 - 项目类别:
Biostatistics, Data Analysis and Computation (BDAC Core)
生物统计学、数据分析和计算(BDAC 核心)
- 批准号:
8379366 - 财政年份:
- 资助金额:
$ 7.93万 - 项目类别:
Biostatistics, Data Analysis and Computation (BDAC Core)
生物统计学、数据分析和计算(BDAC 核心)
- 批准号:
8710054 - 财政年份:
- 资助金额:
$ 7.93万 - 项目类别:
Biostatistics, Data Analysis and Computation (BDAC Core)
生物统计学、数据分析和计算(BDAC 核心)
- 批准号:
8545112 - 财政年份:
- 资助金额:
$ 7.93万 - 项目类别:
相似海外基金
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2015
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2014
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Solution to the Fokker Planck Kolmogorov Equation using Hoeffding's Functional Analysis of Variance Decomposition
使用 Hoeffding 方差分解泛函分析求解 Fokker Planck Kolmogorov 方程
- 批准号:
464881-2014 - 财政年份:2014
- 资助金额:
$ 7.93万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2013
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2012
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
- 批准号:
402477-2011 - 财政年份:2011
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Investigations in Robust Analysis of Variance
稳健方差分析研究
- 批准号:
9209709 - 财政年份:1992
- 资助金额:
$ 7.93万 - 项目类别:
Continuing Grant
Inference problems in inverse gaussian distribution, analysis of variance models and super population models
逆高斯分布的推理问题、方差模型和超总体模型的分析
- 批准号:
3661-1990 - 财政年份:1992
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Inference problems in inverse gaussian distribution, analysis of variance models and super population models
逆高斯分布的推理问题、方差模型和超总体模型的分析
- 批准号:
3661-1990 - 财政年份:1991
- 资助金额:
$ 7.93万 - 项目类别:
Discovery Grants Program - Individual
Robust Analysis of Variance and Analysis of Designed Experiments
稳健方差分析和设计实验分析
- 批准号:
9001860 - 财政年份:1990
- 资助金额:
$ 7.93万 - 项目类别:
Standard Grant














{{item.name}}会员




