Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data

高维数据的广义多变量方差分析 (GMANOVA) 模型

基本信息

  • 批准号:
    402477-2011
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Identifying genes with different expression profiles and ranking them according to these differences in complex time course genomic experiments is very challenging and only few methodological research has been conducted. Challenges in such data arise because expression levels at different time point are often correlated since measurements are taken from same organism, tissue, cell or culture. Moreover, time dependency of gene expression values are usually of interest and often are the biological question that motivates the problem. Another challenge unique to time course genomic experiments is the gene-specific high dimensionality where fewer replications than the time points are often available leading to singular gene-specific covariance matrices. This is in addition to the global high-dimensionality problem common to all microarry experiments. High-dimensional data is not limited to high-throughput genomic experiments. Such data also arises in a wide range of applications including neurological research and signal processing. The Objective of this research program is to provide inference and diagnostic procedures for high dimensional time course data with a focus on time course genomic data. We propose to provide a unified framework for Generalized Analysis of Variance (GMANOVA) models that includes ANOVA and MANOVA as special cases. We will provide moderated test statistics for high-dimensional time course data using GMANOVA models. The model incorporates the within (across time points) correlations and the temporal ordering. Moreover, time is included in the analysis as a continues variable. We will use James-Stein and empirical Bayes Shrinkage approaches to moderate the covariance matrix. We will provide moderated GMANOVA based approaches for gene filtering, gene ranking and identifying genes with different expression profiles for time course microarray experiments. For biologically interesting candidate genetic markers, we will provide moderated likelihood ratio estimates of the mean expression profile. We will also provide moderated residuals that can be used for validating model assumptions and identifying extreme observations.
在复杂的时间进程基因组实验中识别具有不同表达谱的基因并根据这些差异对它们进行排名是非常具有挑战性的,并且只进行了很少的方法学研究。这些数据中的挑战出现,因为不同时间点的表达水平通常是相关的,因为测量值取自相同的生物体、组织、细胞或培养物。此外,基因表达值的时间依赖性通常是感兴趣的,并且通常是激发该问题的生物学问题。时间进程基因组实验特有的另一个挑战是基因特异性的高维性,其中通常可获得比时间点更少的重复,从而导致奇异的基因特异性协方差矩阵。这是除了所有微阵列实验常见的全局高维问题之外的问题。高维数据不限于高通量基因组实验。此类数据还出现在广泛的应用中,包括神经学研究和信号处理。本研究计划的目的是为高维时间过程数据提供推理和诊断程序,重点是时间过程基因组数据。我们建议为广义方差分析(GMANOVA)模型提供一个统一的框架,其中包括ANOVA和MANOVA作为特殊情况。我们将使用GMANOVA模型为高维时间过程数据提供适度的检验统计量。该模型结合了内(跨时间点)的相关性和时间顺序。此外,时间作为连续变量纳入分析。我们将使用James-Stein和经验贝叶斯收缩方法来调节协方差矩阵。我们将提供基于GMANOVA的温和方法,用于基因过滤、基因排名和识别具有不同表达谱的基因,用于时程微阵列实验。对于生物学上感兴趣的候选遗传标记,我们将提供平均表达谱的适度似然比估计。我们还将提供适度的残差,可用于验证模型假设和识别极端观测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamid, Jemila其他文献

Frozen Section of Placental Membranes and Umbilical Cord An Aid to Early Postpartum Diagnosis of Intra-Amniotic Infection
  • DOI:
    10.1309/ajcpyn70dluffdvp
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mahe, Etienne;Hamid, Jemila;Arredondo-Marin, Jorge
  • 通讯作者:
    Arredondo-Marin, Jorge
International Variation in Asthma and Bronchiolitis Guidelines
  • DOI:
    10.1542/peds.2017-0092
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Bakel, Leigh Anne;Hamid, Jemila;Cohen, Eyal
  • 通讯作者:
    Cohen, Eyal
Laboratory reference intervals in the assessment of iron status in young children
  • DOI:
    10.1136/bmjpo-2017-000074
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Parkin, Patricia C.;Hamid, Jemila;Adeli, Khosrow
  • 通讯作者:
    Adeli, Khosrow

Hamid, Jemila的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hamid, Jemila', 18)}}的其他基金

Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
  • 批准号:
    402477-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
  • 批准号:
    402477-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
  • 批准号:
    402477-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized multivariate analysis of variance (GMANOVA) models for high dimensional data
高维数据的广义多变量方差分析 (GMANOVA) 模型
  • 批准号:
    402477-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目

相似海外基金

Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
  • 批准号:
    10662781
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
  • 批准号:
    10658215
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
SEMA6D-mediated breast cancer disparity, metastasis, and tumor-immune interaction
SEMA6D 介导的乳腺癌差异、转移和肿瘤免疫相互作用
  • 批准号:
    10634959
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
  • 批准号:
    10720562
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Neurocognitive Foundations of Morphological Processing in Children with Dyslexia
阅读障碍儿童形态处理的神经认知基础
  • 批准号:
    10538156
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
  • 批准号:
    23K16854
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了