Isolation of ribonucleic acids that are attached to the neuronal membrane

分离附着在神经元膜上的核糖核酸

基本信息

  • 批准号:
    8103245
  • 负责人:
  • 金额:
    $ 30.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-15 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The origin of life on our planet is widely believed to be the so-called "RNA world". During evolution, before DNA and proteins were part of life there was a world full of RNAs that possess self-replicating enzymatic ability. The history of RNA world is recorded in the current life. For example, ribosome is a peptide-bond forming enzyme whose catalytic core is formed exclusively by RNA. The proteins in the ribosomes have rather accessory and regulatory roles that are acquired later during evolution. The small RNA is another example that demonstrates the important regulatory function of RNA in various biological processes. How did lipid membrane join the RNA world? Cellular membranes have extremely important roles in providing the ideal conditions for the chemical reactions in the cytoplasm. However there is no convincing model that explains how membranes were integrated into life after the "RNA world". In this EUREKA proposal, I will test the hypothesis that some form of RNA exists that regulates the function of lipid bilayers. More specifically, I consider the existence of the following kind of RNAs. First, there may be a category of small RNA that regulates the function of plasma membrane. In another case, there may be primitive ion channels that are formed by RNA with accessory proteins. Protein conducting channels in the endoplasmic reticulum binds to ribosomes and therefore may be considered as one example of a system in which RNAs function at the membrane. Taken together there is a good chance that RNAs are embedded in the membrane and play fundamentally important function in biology. To test this hypothesis, we will investigate whether any RNA forms are co-purified from the brain membranes. The brain will be used as a model organ because it contains a rich variety of membranes. Two approaches will be taken; (1) We will biochemically enrich neuronal membranes and chemically strip off peripheral membrane attached proteins. We will detergent solubilize these membranes and isolate RNAs by separating them from transmembrane proteins. (2) The total RNA from brain will be reconstituted into membrane made of total brain lipids. The membranes will be separated from the unbound RNA by density gradient ultracentrifugation. The isolated membrane will be solubilized in detergent and further reconstituted into liposomes. By iteratively repeating lipid reconstitution, isolation, and solubilization, we will enrich membrane bound RNA. We will determine the sequence of the identified RNAs and search for the genomic database to verify that they are not protein coding RNAs nor ribosomal RNAs. If we will be successful in identifying such novel RNA forms that function in the membrane we will further pursue to define their precise functions in the membrane. The identification of RNAs in the membrane will add yet another entity of biological macromolecules that will revolutionize the way we describe biology and medicine. In particular, because brain has the highest lipid composition of all organs, we expect that the results of this research will strongly impact the understanding of the physiology and dysfunction of the nervous system. PUBLIC HEALTH RELEVANCE: This proposal aims to identify novel form of RNAs in the cellular membrane that possess fundamentally important biological functions such as those of ion channels, transporters, and structural regulators of membrane. A discovery of this kind of RNAs may explain novel phenomena mediated by RNA in the membranes in organs that are rich in lipids, such as brain. Because dysfunction of lipid metabolism and membrane morphology have been already implicated in various disorders, the results obtained form this project may deepen our understanding of a variety of diseases including, fragile-X mental retardation, schizophrenia, autism, and dementia.
描述(由申请人提供):我们星球上生命的起源被普遍认为是所谓的“ RNA世界”。在进化过程中,在DNA和蛋白质成为生命的一部分之前,有一个充满RNA具有自我复制酶促能力的世界。 RNA世界的历史记录在当前的生活中。例如,核糖体是一种肽键形成的酶,其催化核由RNA仅形成。核糖体中的蛋白质具有相当相当的配件和调节作用,这些作用是在后期进化过程中获得的。小RNA是另一个例子,证明了RNA在各种生物过程中的重要调节功能。脂质膜如何加入RNA世界?细胞膜在为细胞质化学反应提供理想条件方面具有极为重要的作用。但是,没有令人信服的模型可以解释“ RNA世界”之后的膜如何融入生活中。在本尤里卡(Eureka)的提案中,我将检验以下假设:某种形式的RNA存在调节脂质双层的功能。更具体地说,我认为存在以下类型的RNA。首先,可能有一类小的RNA调节质膜的功能。在另一种情况下,可能存在带有辅助蛋白的RNA形成的原始离子通道。内质网中的蛋白质传导通道与核糖体结合,因此可以被视为RNA在膜上功能的系统的一个例子。综上所述,RNA很有可能被嵌入膜中,并且在生物学中起着重要的重要功能。为了检验这一假设,我们将研究是否从脑膜共纯化任何RNA形式。大脑将被用作模型器官,因为它包含各种膜。将采取两种方法; (1)我们将在生物化学上富集神经元膜,并从化学上剥离外周膜附着的蛋白质。我们将通过将这些膜与跨膜蛋白分开来清除这些膜和分离RNA。 (2)大脑的总RNA将被重构为由总脑脂质制成的膜。膜将通过密度梯度超速离心与未结合的RNA分离。分离的膜将在洗涤剂中溶解并进一步重构为脂质体。通过迭代重复脂质重构,分离和溶解化,我们将富集膜结合的RNA。我们将确定已识别的RNA的序列并搜索基因组数据库,以验证它们不是蛋白质编码RNA和核糖体RNA。如果我们将成功地识别在膜上起作用的新型RNA形式,我们将进一步追求定义它们在膜中的精确功能。膜中RNA的识别将增加另一个生物大分子的实体,这些实体将彻底改变我们描述生物学和医学的方式。特别是,由于大脑对所有器官的脂质组成最高,因此我们希望这项研究的结果将强烈影响对神经系统的生理和功能障碍的理解。 公共卫生相关性:该提案旨在确定具有根本重要的生物学功能的细胞膜中新型RNA的形式,例如膜的离子通道,转运蛋白和结构调节剂的生物学功能。这种RNA的发现可能解释了由RNA介导的新型现象,这些现象是在富含脂质(例如脑)的器官中的膜中介导的。由于脂质代谢和膜形态的功能障碍已经与各种疾病有关,因此获得的结果可能会加深我们对各种疾病的理解,包括脆弱的X智力低下,精神分裂症,自闭症和痴呆症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terunaga Nakagawa其他文献

Terunaga Nakagawa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terunaga Nakagawa', 18)}}的其他基金

Illuminating the structure and function of CACNG5 and 7
阐明 CACNG5 和 7 的结构和功能
  • 批准号:
    10452080
  • 财政年份:
    2022
  • 资助金额:
    $ 30.59万
  • 项目类别:
Mechanism of functional modulation of glutamate receptors by their auxiliary subunits
谷氨酸受体辅助亚基的功能调节机制
  • 批准号:
    10536674
  • 财政年份:
    2021
  • 资助金额:
    $ 30.59万
  • 项目类别:
Thermo Scientific Glacios cryo-TEM
Thermo Scientific Glacios 冷冻透射电镜
  • 批准号:
    10175401
  • 财政年份:
    2021
  • 资助金额:
    $ 30.59万
  • 项目类别:
Mechanism of functional modulation of glutamate receptors by their auxiliary subunits
谷氨酸受体辅助亚基的功能调节机制
  • 批准号:
    10375867
  • 财政年份:
    2021
  • 资助金额:
    $ 30.59万
  • 项目类别:
Mechanism of functional modulation of glutamate receptors by their auxiliary subunits
谷氨酸受体辅助亚基的功能调节机制
  • 批准号:
    10176871
  • 财政年份:
    2020
  • 资助金额:
    $ 30.59万
  • 项目类别:
Identifying molecules that modulate auxiliary factors of AMPA receptors
识别调节 AMPA 受体辅助因子的分子
  • 批准号:
    8896065
  • 财政年份:
    2014
  • 资助金额:
    $ 30.59万
  • 项目类别:
Identifying molecules that modulate auxiliary factors of AMPA receptors
识别调节 AMPA 受体辅助因子的分子
  • 批准号:
    8769436
  • 财政年份:
    2014
  • 资助金额:
    $ 30.59万
  • 项目类别:
Molecular Anatomy of Mature and Immature Glutamate Receptors
成熟和未成熟谷氨酸受体的分子解剖学
  • 批准号:
    8627225
  • 财政年份:
    2010
  • 资助金额:
    $ 30.59万
  • 项目类别:
Molecular Anatomy of Mature and Immature Glutamate Receptors
成熟和未成熟谷氨酸受体的分子解剖学
  • 批准号:
    8109328
  • 财政年份:
    2010
  • 资助金额:
    $ 30.59万
  • 项目类别:
Molecular Anatomy of Mature and Immature Glutamate Receptors
成熟和未成熟谷氨酸受体的分子解剖学
  • 批准号:
    7991112
  • 财政年份:
    2010
  • 资助金额:
    $ 30.59万
  • 项目类别:

相似国自然基金

染色质结合蛋白CBX2调控小细胞外囊泡生物发生促进卵巢癌转移的机制研究
  • 批准号:
    82360541
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
RBM34通过介导let-7家族miRNA的生物发生调控肝星状细胞活化的机制研究
  • 批准号:
    81900559
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
EBP50对RA-FLS生物学行为的影响及其在RA发生发展中的作用和相关机制
  • 批准号:
    81660277
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
利用同步辐射微束X射线荧光结合分子生物学技术研究纳米材料暴露对黑腹果蝇卵子发生过程的影响及其分子机制
  • 批准号:
    11505193
  • 批准年份:
    2015
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dissecting the role of the exon junction complex in embryonic corticogenesis
剖析外显子连接复合物在胚胎皮质发生中的作用
  • 批准号:
    9246340
  • 财政年份:
    2016
  • 资助金额:
    $ 30.59万
  • 项目类别:
Dissecting the role of the exon junction complex in embryonic corticogenesis
剖析外显子连接复合物在胚胎皮质发生中的作用
  • 批准号:
    9123054
  • 财政年份:
    2016
  • 资助金额:
    $ 30.59万
  • 项目类别:
Neurotrophin-Induced Regulation of the microRNA Processing Factor Lin28a
神经营养素诱导的 microRNA 加工因子 Lin28a 的调节
  • 批准号:
    8714244
  • 财政年份:
    2014
  • 资助金额:
    $ 30.59万
  • 项目类别:
MicroRNA biogenesis and specificity in neurotrophin-dependent protein synthesis
神经营养蛋白依赖性蛋白质合成中的 MicroRNA 生物合成和特异性
  • 批准号:
    8490447
  • 财政年份:
    2012
  • 资助金额:
    $ 30.59万
  • 项目类别:
MicroRNA biogenesis and specificity in neurotrophin-dependent protein synthesis
神经营养蛋白依赖性蛋白质合成中的 MicroRNA 生物合成和特异性
  • 批准号:
    8344656
  • 财政年份:
    2012
  • 资助金额:
    $ 30.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了