C. elegans transcriptional regulatory elements

线虫转录调控元件

基本信息

项目摘要

DESCRIPTION (provided by applicant): Cis-acting regulatory elements control gene expression and are involved in all aspects of development, behavior and physiology; but no cis-regulatory element map yet exists for any metazoan genome. We therefore propose to identify genome-wide cis-regulatory elements in C. elegans. Among existing model organisms, C. elegans offers a strong combination of biological properties, transgenic technology, comparisons to genomes in four sibling species, and critical computational and bioinformatic infrastructure. We intend to find genomic regulatory elements in genes with widely varying expression patterns, gene functions, and cis-element content that drive expression in diverse developmental stages, cell types and physiological conditions. A pipeline of genomic predictions followed by efficient transgenic reporter assays will allow us to generate and analyze 10 DNA constructs each week. In year 1 we plan to identify hundreds of regulatory elements, with higher numbers in following years as we become better at predicting functional elements. Predicted elements will be assigned statistical scores based on the quality of their supporting computational and experimental data. We will also use chromatin immunoprecipitation analyzed by intense sequencing (ChIP-seq) to find regulatory modules, and compare its accuracy in finding functional sequences to that of predictions based on comparative genomics. The first round of our results from direct tests of predicted elements and ChIP-seq will be combined with external data from modENCODE to improve our predictive algorithms for later cycles of genome-wide element prediction. Our data will be released promptly to WormBase, and all our computational tools are freely available with full source code. PUBLIC HEALTH RELEVANCE: Regulatory DNA sequences that control the time, place, and level of transcription are crucial for normal development, behavior and physiology as well as disease; yet there is no genome-wide map of them for any animal genome, nor are researchers currently able to predict their functional output from their DNA sequences. We will attempt to solve this problem by extensive, reiterated experimental tests of computational predictions in a simple animal genome.
描述(由申请人提供):顺式调控元件控制基因表达,涉及发育、行为和生理的各个方面;但目前还没有任何后生动物基因组的顺式调控元件图谱。因此,我们建议在秀丽隐杆线虫中鉴定全基因组顺式调控元件。在现有的模式生物中,秀丽隐杆线虫提供了生物学特性、转基因技术、与四个兄弟物种的基因组比较以及关键的计算和生物信息学基础设施的强大组合。我们打算在基因中发现具有广泛不同的表达模式、基因功能和顺式元件含量的基因组调控元件,这些元件在不同的发育阶段、细胞类型和生理条件下驱动表达。通过高效的转基因报告基因分析,我们可以每周生成并分析10个DNA结构。在第一年,我们计划识别数百个调控元件,随着我们在预测功能元件方面做得更好,接下来几年的数量会更多。预测元素将根据其支持的计算和实验数据的质量分配统计分数。我们还将使用染色质免疫沉淀分析,通过高强度测序(ChIP-seq)来寻找调节模块,并将其在寻找功能序列方面的准确性与基于比较基因组学的预测进行比较。第一轮预测元件和ChIP-seq直接测试的结果将与modENCODE的外部数据相结合,以改进我们的全基因组元件预测的后续周期的预测算法。我们的数据将及时发布到WormBase,我们所有的计算工具都是免费的,并提供完整的源代码。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL Warren STERNBERG其他文献

PAUL Warren STERNBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL Warren STERNBERG', 18)}}的其他基金

Curation at scale: Integrating AI into community curation
大规模策展:将人工智能融入社区策展
  • 批准号:
    10621338
  • 财政年份:
    2021
  • 资助金额:
    $ 48.52万
  • 项目类别:
Curation at scale: Integrating AI into community curation
大规模策展:将人工智能融入社区策展
  • 批准号:
    10344771
  • 财政年份:
    2021
  • 资助金额:
    $ 48.52万
  • 项目类别:
Bipartite gene expression system for C. elegans genetic and neural circuit analysis
用于线虫遗传和神经回路分析的二分基因表达系统
  • 批准号:
    9437389
  • 财政年份:
    2017
  • 资助金额:
    $ 48.52万
  • 项目类别:
Genetics 2012: Model Organism to Human Cancer
遗传学 2012:人类癌症模型生物
  • 批准号:
    8319996
  • 财政年份:
    2012
  • 资助金额:
    $ 48.52万
  • 项目类别:
C. elegans transcriptional regulatory elements
线虫转录调控元件
  • 批准号:
    8258290
  • 财政年份:
    2010
  • 资助金额:
    $ 48.52万
  • 项目类别:
C. elegans transcriptional regulatory elements
线虫转录调控元件
  • 批准号:
    8460166
  • 财政年份:
    2010
  • 资助金额:
    $ 48.52万
  • 项目类别:
C. elegans transcriptional regulatory elements
线虫转录调控元件
  • 批准号:
    7785896
  • 财政年份:
    2010
  • 资助金额:
    $ 48.52万
  • 项目类别:
Textpresso, information retrieval and extraction system for biological literature
Textpresso,生物文献信息检索和提取系统
  • 批准号:
    7347569
  • 财政年份:
    2006
  • 资助金额:
    $ 48.52万
  • 项目类别:
Textpresso, an information retrieval and extraction system for biological literat
Textpresso,生物文学信息检索和提取系统
  • 批准号:
    7047977
  • 财政年份:
    2006
  • 资助金额:
    $ 48.52万
  • 项目类别:
Textpresso, information retrieval and extraction system for biological literature
Textpresso,生物文献信息检索和提取系统
  • 批准号:
    7212077
  • 财政年份:
    2006
  • 资助金额:
    $ 48.52万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了