Structural Elucidation, Synthesis and Study of the Chlorosulfolipids

氯磺脂的结构解析、合成与研究

基本信息

项目摘要

DESCRIPTION (provided by applicant): Nature makes extensive use of chlorine in biosynthesis; to date, over 2000 chlorinated natural products have been identified. Many of these chlorinated secondary metabolites display potent and varied biological activities, but are available from natural sources in only minute quantities. The significant question as to what advantage is conferred upon these compounds by the presence of the chlorine atom remains to be answered. The ability to answer this question is dependent upon effective strategies for the synthesis of chlorinated compounds, and the current level of sophistication in this field is low. The chlorosulfolipids, a family of stereochemically complex alkanes that display numerous chlorine-bearing stereogenic centers, represent one particularly intriguing class of polychlorinated molecules. Certain chlorosulfolipids have been established as causative agents of Diarrhetic Shellfish Poisoning when people have consumed tainted mussels, and others are the exclusive polar lipids in the cell and flagellar membranes of many species of freshwater algae. That these compounds, which bear two polar sulfate groups at opposite ends of the alkane chain, are major components of stable membranes is truly intriguing. It is thought that these compounds could be much more widespread than originally expected, and might be pervasive among algal species. The relative and absolute stereochemistry has only been established for the mussel-derived lipids. To date, few studies toward the synthesis of these challenging targets, or investigations into their conformational behavior, or their bulk or membrane properties, have been reported. The cell and flagellar membranes of the alga Ochromonas danica are largely composed of chlorosulfolipids and contain essentially no phospholipids; these polychlorinated natural products have been found in numerous freshwater algae species. We propose to elucidate the relative and absolute stereochemistry of the major chlorosulfolipid from O. danica by NMR methods. We will then verify the stereochemical assignment by synthesis. These endeavors have already met with substantial success. An enantioselective route to this lipid target will be developed, and it will also be adapted to the first synthesis of enantioenriched chlorosulfolipid mussel toxin. We will revisit the related polychlorinated natural product malhamensilipin A, and determine its stereochemistry by spectroscopic methods, and confirm these results by synthesis. We will also reisolate and determine the structure of several of the less chlorinated O. danica lipids and synthesize representative members. The solution conformations of the chlorosulfolipids synthesized will be studied using NMR spectroscopy and with computational modeling. The goal of this portion of the research is to further our understanding of the conformations of polychlorinated alkanes, and to garner a predictive ability to control molecular shape (conformation) according to the number and stereochemistry of chlorine residues along an alkane chain. Finally, we will study the chlorosulfolipids generated by synthesis using cutting edge solid-state NMR methods currently in development in the Martin lab at UCI. We will use variable angle spinning (VAS) and switched angle spinning (SAS) experiments, among others, to learn about the dynamics of these lipid molecules in physiologically relevant (bulk) conditions. The long-term impact of the research in this proposal will include the availability of more effective strategies for the stereoselective synthesis of polychlorinated natural products, and a greater understanding of the reactivity of polychlorinated alkanes. We will also benefit from powerful new strategies for the control of molecular shape, which is intimately tied to function. Finally, this research could begin to shed light on an evolutionary diversion in membrane design that resulted in the chlorosulfolipid-based cell membranes of many freshwater algae.
描述(由申请人提供):自然界在生物合成中广泛使用氯;迄今为止,已鉴定出2000多种氯化天然产物。许多这些氯化次生代谢物显示出强大和多样的生物活性,但从自然来源中只能获得极少量。至于氯原子的存在给这些化合物带来了什么好处,这个重要的问题还有待回答。回答这个问题的能力取决于氯化化合物合成的有效策略,而目前这一领域的复杂程度很低。氯磺胺类化合物是一类具有大量含氯立体中心的立体结构的复杂烷烃,是一类特别有趣的多氯化分子。当人们食用受污染的贻贝时,某些氯磺胺类已被确定为腹泻性贝类中毒的病原体,而其他氯磺胺类是许多淡水藻类的细胞和鞭毛膜中的唯一极性脂。这些化合物在烷烃链的两端具有两个极性硫酸盐基团,是稳定膜的主要组成部分,这确实很有趣。据认为,这些化合物可能比最初预期的要广泛得多,并且可能在藻类物种中普遍存在。目前只建立了贻贝源性脂质的相对和绝对立体化学。迄今为止,对这些具有挑战性的靶点的合成,或对其构象行为,或其体积或膜性质的研究很少有报道。丹尼藻的细胞膜和鞭毛膜主要由氯脂肪酸组成,基本上不含磷脂;在许多淡水藻类物种中发现了这些多氯天然产物。本文拟采用核磁共振方法对牛蒡主要氯磺酸脂的相对立体化学和绝对立体化学进行研究。然后我们将通过合成来验证立体化学配位。这些努力已经取得了巨大的成功。对这种脂质靶点的对映选择性途径将被开发出来,它也将适应于首次合成对映富集氯磺胺类贻贝毒素。我们将重新研究相关的多氯天然产物malhamensilipin A,并通过光谱方法测定其立体化学性质,并通过合成证实这些结果。我们还将重新分离和确定几个氯化程度较低的蛇麻脂质的结构,并合成具有代表性的成员。利用核磁共振波谱和计算模型对合成的氯磺酸脂的溶液构象进行了研究。这部分研究的目的是进一步了解多氯烷烃的构象,并根据烷烃链上氯残基的数量和立体化学性质,获得控制分子形状(构象)的预测能力。最后,我们将研究利用目前在UCI的Martin实验室开发的尖端固态核磁共振方法合成的氯磺酸脂。我们将使用可变角度纺丝(VAS)和开关角度纺丝(SAS)等实验来了解这些脂质分子在生理相关(散装)条件下的动力学。本提案中研究的长期影响将包括为立体选择性合成多氯天然产物提供更有效的策略,以及对多氯烷烃的反应性有更深入的了解。我们还将受益于强有力的控制分子形状的新策略,这与功能密切相关。最后,这项研究可以开始揭示膜设计的进化转向,导致许多淡水藻类的氯亚砜基细胞膜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher D Vanderwal其他文献

Christopher D Vanderwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher D Vanderwal', 18)}}的其他基金

Chemical Synthesis of Bioactive Diterpenoids
生物活性二萜类化合物的化学合成
  • 批准号:
    10405930
  • 财政年份:
    2022
  • 资助金额:
    $ 28.42万
  • 项目类别:
Cyclization Cascades to Access Bioactive Diterpenoids
环化级联以获得生物活性二萜类化合物
  • 批准号:
    9753289
  • 财政年份:
    2018
  • 资助金额:
    $ 28.42万
  • 项目类别:
Cyclization Cascades to Access Bioactive Diterpenoids
环化级联以获得生物活性二萜类化合物
  • 批准号:
    10217197
  • 财政年份:
    2018
  • 资助金额:
    $ 28.42万
  • 项目类别:
Structural Elucidation, Synthesis and Study of the Chlorosulfolipids
氯磺脂的结构解析、合成与研究
  • 批准号:
    7788733
  • 财政年份:
    2010
  • 资助金额:
    $ 28.42万
  • 项目类别:
Structural Elucidation, Synthesis and Study of the Chlorosulfolipids
氯磺脂的结构解析、合成与研究
  • 批准号:
    8401523
  • 财政年份:
    2010
  • 资助金额:
    $ 28.42万
  • 项目类别:
Structural Elucidation, Synthesis and Study of the Chlorosulfolipids
氯磺脂的结构解析、合成与研究
  • 批准号:
    8600291
  • 财政年份:
    2010
  • 资助金额:
    $ 28.42万
  • 项目类别:
Structural Elucidation, Synthesis and Study of the Chlorosulfolipids
氯磺脂的结构解析、合成与研究
  • 批准号:
    8207970
  • 财政年份:
    2010
  • 资助金额:
    $ 28.42万
  • 项目类别:

相似海外基金

ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
  • 批准号:
    2301490
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
North Carolina Center for Coastal Algae, People, and Environment NC-CAPE
北卡罗来纳州沿海藻类、人类和环境中心 NC-CAPE
  • 批准号:
    2414792
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
  • 批准号:
    EP/Y003314/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Research Grant
Pathogens of Algae for Biocontrol and Biosecurity
用于生物防治和生物安全的藻类病原体
  • 批准号:
    EP/Y036808/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Research Grant
Molecular fossils, mass extinctions and the rise of complex algae
分子化石、大规模灭绝和复杂藻类的兴起
  • 批准号:
    DP240100281
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Discovery Projects
CORAL:Compostable Foams from Renewable Algae Sources: development and identification of strategies for their implementation
珊瑚:可再生藻类来源的可堆肥泡沫:制定和确定其实施策略
  • 批准号:
    EP/Y027701/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Fellowship
Species identification, ecological elucidation, and resource value assessment of filamentous fungi parasitic on terrestrial plants and algae in polar regions
极地陆生植物和藻类寄生丝状真菌的物种鉴定、生态解析及资源价值评估
  • 批准号:
    23K11504
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Carbon sequestration and sustainable product manufacture by algae using a novel photo-bioreactor
使用新型光生物反应器通过藻类进行碳封存和可持续产品制造
  • 批准号:
    2831630
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Studentship
Elucidation of the molecular mechanisms driving the co-evolution between red tide-causing algae and viruses
阐明驱动赤潮藻类与病毒共同进化的分子机制
  • 批准号:
    23K14265
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling the genetic basis of the gamete recognition system in brown algae
揭示褐藻配子识别系统的遗传基础
  • 批准号:
    23K19386
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了