Computational and single molecule analysis of kinesin's atomistic machinery

驱动蛋白原子机制的计算和单分子分析

基本信息

  • 批准号:
    8134974
  • 负责人:
  • 金额:
    $ 22.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Kinesin is the smallest known biped motor protein that uses ATP as a fuel to walk processively along the microtubule track. Its proper function is critical for many vital tasks including intracellular cargo transport and cell division. A deeper insight into how kinesin functions is thus not only important for advancing fundamental knowledge of molecular motors, but also critical for developing novel therapeutics against diseases involving impaired intracellular transport. While past advances revealed many important aspects on its global motility characteristics, physical mechanism underling its stepping motion remains unclear. A major difficulty in studying kinesin motility or motor proteins in general, is that the molecule dynamically senses and generates force to move, which is difficult to contemplate based on static structural picture only. To investigate the dynamic aspect in atomistic detail, we take a synergistic approach between molecular dynamics simulation and single-molecule experiment. Using molecular dynamics simulations, we discovered that kinesin generates force by folding of a domain, which we named the cover-neck bundle. While the proposed mechanism is supported by our single-molecule motility experiments testing kinesin mutants designed to generate less force, the experiments led to further questions regarding energetics of the force generation as well as the role of the force-generating step in the overall kinesin mechanochemical cycle. Furthermore, our preliminary simulations identified two other crucial aspects of kinesin motility: (1) the structural pathway by which mechanical strain is transmitted through the motor head to modulate the nucleotide affinity, which is important for motor head coordination, and (2) the dynamic role of the C-terminal flexible E-hook domains of the microtubule in biasing the trajectory of a motor head, which is critical for how kinesin makes a step. These issues will be thoroughly investigated by further simulations. Mutant kinesins will be generated that specifically alter the physical mechanism found in simulations, and experimentally tested using state-of-the-art optical trap systems. Outcome of this work will provide a clearer atomistic picture of the mechanics underling kinesin motility. With our previous R21-funded project as a precursor, the proposed work will be developed via strong synergy between experiments and simulations, which will be the basis upon which a host of other motor proteins will be investigated as our long-term goal. PUBLIC HEALTH RELEVANCE: Deeper understanding of kinesin motility will enable better control of its behavior and motility characteristics, which will lead to novel therapeutics that target kinesin-mediated transport. Our combined approach of computational modeling of macromolecular complexes and single-molecule manipulation experiment provides a platform upon which a range of subcellular motor processes of biomedical importance will be investigated.
描述(申请人提供):Kinesin是已知的最小的两足动物马达蛋白,它使用ATP作为燃料沿着微管轨道连续行走。它的正确功能对许多重要任务至关重要,包括细胞内的货物运输和细胞分裂。因此,更深入地了解Kinesin的功能不仅对于推进分子马达的基础知识非常重要,而且对于开发针对涉及细胞内转运受损的疾病的新疗法也是至关重要的。虽然以往的研究揭示了其全球运动特性的许多重要方面,但其步进运动背后的物理机制仍不清楚。研究运动素运动或马达蛋白质的一个主要困难是分子动态地感知并产生移动的力,这是很难仅基于静态结构图像来考虑的。为了在原子细节上研究动力学方面,我们采取了分子动力学模拟和单分子实验相结合的方法。利用分子动力学模拟,我们发现动蛋白是通过折叠一个结构域来产生力的,我们称之为套颈束。虽然所提出的机制得到了我们的单分子运动学实验的支持,该实验测试了旨在产生较少力的突变体中的运动,但这些实验引发了关于力生成的能量学以及力生成步骤在机械力化学循环中的整个运动步骤中的作用的进一步问题。此外,我们的初步模拟发现了Kinesin运动性的另外两个关键方面:(1)机械应变通过运动头传递以调节核苷酸亲和力的结构路径,这对运动头的协调非常重要;(2)微管的C-末端柔性E-Hook结构域在偏置运动头的轨迹中的动态作用,这对Kinesin如何迈出一步至关重要。这些问题将通过进一步的模拟得到彻底的研究。突变的动蛋白将被产生,专门改变在模拟中发现的物理机制,并使用最先进的光学陷阱系统进行实验测试。这项工作的结果将为运动学背后的机制提供一个更清晰的原子学图景。以我们之前由R21资助的项目为先导,拟议的工作将通过实验和模拟之间的强大协同作用来发展,这将是我们作为长期目标研究许多其他马达蛋白质的基础。公共卫生相关性:更深入地了解运动蛋白的运动将使其能够更好地控制其行为和运动特性,这将导致针对运动蛋白介导的运输的新疗法。我们的大分子复合体计算建模和单分子操纵实验相结合的方法提供了一个平台,在此平台上将研究一系列具有生物医学意义的亚细胞运动过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wonmuk Hwang其他文献

Wonmuk Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wonmuk Hwang', 18)}}的其他基金

Molecular Dynamics
分子动力学
  • 批准号:
    10438677
  • 财政年份:
    2020
  • 资助金额:
    $ 22.3万
  • 项目类别:
Molecular Dynamics
分子动力学
  • 批准号:
    10020599
  • 财政年份:
    2020
  • 资助金额:
    $ 22.3万
  • 项目类别:
Molecular Dynamics
分子动力学
  • 批准号:
    10225506
  • 财政年份:
    2020
  • 资助金额:
    $ 22.3万
  • 项目类别:
Molecular Dynamics
分子动力学
  • 批准号:
    10655326
  • 财政年份:
    2020
  • 资助金额:
    $ 22.3万
  • 项目类别:
THE ATOMISTIC SCALE KINESIN MECHANISM ELUCIDATED ON THE EXPERIMENTAL TIME SCALE
实验时间尺度上阐明的原子尺度驱动蛋白机制
  • 批准号:
    8364330
  • 财政年份:
    2011
  • 资助金额:
    $ 22.3万
  • 项目类别:
Computational and single molecule analysis of kinesin's atomistic machinery
驱动蛋白原子机制的计算和单分子分析
  • 批准号:
    8330273
  • 财政年份:
    2009
  • 资助金额:
    $ 22.3万
  • 项目类别:
Computational and single molecule analysis of kinesin's atomistic machinery
驱动蛋白原子机制的计算和单分子分析
  • 批准号:
    7920016
  • 财政年份:
    2009
  • 资助金额:
    $ 22.3万
  • 项目类别:
Computational and Single-Molecule Characterization of Kinesin's Power Stroke
驱动蛋白动力冲程的计算和单分子表征
  • 批准号:
    7357447
  • 财政年份:
    2007
  • 资助金额:
    $ 22.3万
  • 项目类别:
Computational and Single-Molecule Characterization of Kinesin's Power Stroke
驱动蛋白动力冲程的计算和单分子表征
  • 批准号:
    7241336
  • 财政年份:
    2007
  • 资助金额:
    $ 22.3万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了