Metabolomic and Integromic Approaches to Identify Fingerprints for Early Detectio

识别指纹以进行早期检测的代谢组学和整合组学方法

基本信息

  • 批准号:
    8100460
  • 负责人:
  • 金额:
    $ 16.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The accumulation of omics data at multiple levels provides an opportunity to better understand the progression of chronic liver disease (CLD) to hepatocellular carcinoma (HCC). A variety of HCC- associated molecular alterations have been detected. However, due to the lack of good diagnostic markers and treatment strategies, and because of the disease heterogeneity in human populations, a coherent understanding of the mechanism of HCC development is still limited. The assessment of complex multigenic molecular pathways in HCC remains a difficult challenge. This project brings together experts in bioinformatics, biostatistics, biochemistry, clinical cancer research, and mass spectrometry to EM Algorithm, Posterior Mode</keyword></keywords><dat treatment of HCC. Specifically, this project Evaluate metabolic changes in the progression of CLD to HCC in serum and plasma samples by an ultra-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometry (UPLC-QTOF MS). Serum and plasma samples collected from newly diagnosed HCC cases and matched cirrhotic controls will be utilized. The identified metabolic biomarkers will be verified by comparing their tandem mass spectrometry data with those generated from commercially available standard compounds. (2) Investigate key metabolic and signaling pathways that may be altered in the progression of CLD to HCC. Specifically, we will utilize a pathway-centric approach by integrating experimental findings from multiple studies, including our previous proteomics and glycomics studies, to provide a "molecular map" of changes in HCC to aid in the design of targets for diagnostic and therapeutic development. We anticipate the outcome of this study to enhance our understanding of the disease progression and the functional involvement of candidate HCC biomarkers in metabolic and signaling pathways. PUBLIC HEALTH RELEVANCE: Defining clinically applicable biomarkers that detect early-stage hepatocellular carcinoma (HCC) in a high-risk population of cirrhotic patients has potentially far-reaching consequences for disease management and patient health. This project is important because most HCC patients are diagnosed at a late stage, where the treatment options are limited. There is a pressing need to identify biomarkers that could be used for early detection of HCC. This project will capitalize on markers identified in this and other studies to investigate fingerprints that may be related to the progression of HCC. In addition to screening high-risk populations for early signs of disease, the identified biomarkers and knowledge of their functional involvement in metabolic and signaling pathways could be used to design and test improved treatment strategies.
描述(由申请人提供):多水平组学数据的积累为更好地了解慢性肝病(CLD)进展为肝细胞癌(HCC)提供了机会。已经检测到多种HCC相关的分子改变。然而,由于缺乏良好的诊断标志物和治疗策略,以及由于疾病在人群中的异质性,对HCC发展机制的一致理解仍然有限。HCC中复杂的多基因分子通路的评估仍然是一个困难的挑战。该项目汇集了生物信息学,生物统计学,生物化学,临床癌症研究和质谱学方面的专家,以EM算法,后验模式&lt;dat治疗HCC。</keyword></keywords>具体而言,本项目通过超高效液相色谱-四极杆飞行时间质谱(UPLC-QTOF MS)评价血清和血浆样本中CLD向HCC进展过程中的代谢变化。将使用从新诊断的HCC病例和匹配的HCC对照中采集的血清和血浆样本。将通过将其串联质谱数据与市售标准化合物生成的数据进行比较,验证已鉴别的代谢生物标志物。(2)研究在CLD向HCC进展过程中可能发生改变的关键代谢和信号通路。具体来说,我们将利用一种以路径为中心的方法,通过整合多项研究的实验结果,包括我们以前的蛋白质组学和糖组学研究,提供HCC变化的“分子图谱”,以帮助设计诊断和治疗开发的靶点。我们期待这项研究的结果,以提高我们对疾病进展和候选HCC生物标志物在代谢和信号通路中的功能参与的理解。 公共卫生关系:定义临床上适用的生物标志物,检测早期肝细胞癌(HCC)的高风险人群中的肝细胞癌患者有潜在的疾病管理和患者健康的深远影响。这个项目很重要,因为大多数HCC患者都是在晚期被诊断出来的,治疗选择有限。迫切需要鉴定可用于早期检测HCC的生物标志物。该项目将利用本研究和其他研究中确定的标志物来研究可能与HCC进展相关的指纹。除了筛查高风险人群的疾病早期体征外,所确定的生物标志物及其在代谢和信号传导途径中的功能参与的知识可用于设计和测试改进的治疗策略。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LC-MS-based metabolomics.
  • DOI:
    10.1039/c1mb05350g
  • 发表时间:
    2012-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhou B;Xiao JF;Tuli L;Ressom HW
  • 通讯作者:
    Ressom HW
Metabolite identification and quantitation in LC-MS/MS-based metabolomics.
  • DOI:
    10.1016/j.trac.2011.08.009
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
    13.1
  • 作者:
    Xiao, Jun Feng;Zhou, Bin;Ressom, Habtom W.
  • 通讯作者:
    Ressom, Habtom W.
Prioritization of putative metabolite identifications in LC-MS/MS experiments using a computational pipeline.
  • DOI:
    10.1002/pmic.201200306
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhou, Bin;Xiao, Jun Feng;Ressom, Habtom W.
  • 通讯作者:
    Ressom, Habtom W.
LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort.
  • DOI:
    10.1021/pr300673x
  • 发表时间:
    2012-12-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Xiao JF;Varghese RS;Zhou B;Nezami Ranjbar MR;Zhao Y;Tsai TH;Di Poto C;Wang J;Goerlitz D;Luo Y;Cheema AK;Sarhan N;Soliman H;Tadesse MG;Ziada DH;Ressom HW
  • 通讯作者:
    Ressom HW
MetaboSearch: tool for mass-based metabolite identification using multiple databases.
  • DOI:
    10.1371/journal.pone.0040096
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhou B;Wang J;Ressom HW
  • 通讯作者:
    Ressom HW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Habtom W Ressom其他文献

Habtom W Ressom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Habtom W Ressom', 18)}}的其他基金

Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
  • 批准号:
    10705675
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
  • 批准号:
    10491700
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
  • 批准号:
    10581892
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
  • 批准号:
    10206465
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
Systems Metabolomics for HCC Biomarker Discovery
HCC 生物标志物发现的系统代谢组学
  • 批准号:
    9894874
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
Integrative Analysis of GC-MS and LC-MS Data for Biomarker Discovery
GC-MS 和 LC-MS 数据综合分析以发现生物标志物
  • 批准号:
    10393981
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
New Tools for Metabolite Identification and Quantitation
代谢物鉴定和定量的新工具
  • 批准号:
    9430743
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
  • 批准号:
    9115112
  • 财政年份:
    2015
  • 资助金额:
    $ 16.19万
  • 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
  • 批准号:
    9302701
  • 财政年份:
    2015
  • 资助金额:
    $ 16.19万
  • 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
  • 批准号:
    9267193
  • 财政年份:
    2015
  • 资助金额:
    $ 16.19万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了