Methods for detecting interacting risk factors for addictions
检测成瘾相互作用危险因素的方法
基本信息
- 批准号:8038314
- 负责人:
- 金额:$ 18.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlcohol dependenceAlcohol or Other Drugs useAlcoholsAlgorithmsAreaBehaviorComplexDataData SetDetectionDevelopmentDiseaseEnvironmentEnvironmental Risk FactorGenesGeneticGenetic RiskGenetic VariationGoalsGrantHaplotypesHealthIndividual DifferencesInterventionKnowledgeLeadLinkage DisequilibriumMethodologyMethodsOther GeneticsPathway interactionsPerformancePhenotypePlayPolygenic TraitsPopulationPredispositionResearchResearch DesignRiskRisk FactorsRoleSimulateStatistical MethodsStratificationSubstance AddictionSubstance Use DisorderSubstance abuse problemTechniquesTestingTreatment outcomeUniversitiesWashingtonaddictionalcohol use disorderbasecase controldata miningforestgene environment interactiongene interactiongenetic analysisgenetic associationgenetic risk factorgenetic variantgenome wide association studyimprovedinnovationnovelnovel strategiesprogramspublic health relevancesimulationsuccesstraituser friendly software
项目摘要
DESCRIPTION (provided by applicant): Susceptibility to alcohol and substance dependence is influenced by genetic factors. However, few specific genetic variations that alter susceptibility to addiction have been discovered. This is partly because addiction is a polygenic trait, influenced by many genetic variations, each with a small marginal effect. However, the collective effects of those genetic variations and their interactions with other genetic and environmental factors may be quite important in predisposition to alcohol and other substance use disorders and related phenotypes. It is still not clear which study designs and analysis methods are most suitable for detecting the interacting risk factors that contribute to complex traits. Unfortunately, the commonly used statistical approaches for analysis of genetic data may not be optimal for this challenging task. The long term goals of our research are to improve the detection of interacting genetic and environmental risk factors that contribute to the development of substance/alcohol use disorders, by applying optimal statistical techniques. The research proposed in this application aims to develop alternative methods for analyzing genetic data, assess the performance of the proposed methods, and importantly apply these methods to existing genetic data on substance use disorders. In particular, methods based on random forests and related resampling-based data-mining approaches will be considered. Areas of development will include methods for assessing haplotype and gene-level effects, novel permutation algorithms, and improvements in power to detect interacting factors. We will implement these methods in user-friendly software capable of analyzing the vast amounts of data produced by genome wide association scans. Simulations will be used to assess performance of the novel approaches and compare them to traditional genetic association testing methods. The optimal approaches developed in this research program will then be applied to existing datasets on substance dependence and other addiction-related phenotypes. Specifically, case-control data from the NICSNP project and the Study of Addiction: Genetics and Environment (SAGE), collected by Dr. Laura Bierut and colleagues, will be analyzed. Analysis of existing data using new statistical methods that account for genetic interactions has great potential to identify novel genetic variations that contribute to individual differences in susceptibility to substance abuse and dependence. Discovery of genetic and environmental factors that influence substance dependence and related disorders, or outcomes of treatment for these disorders, has important implications including increasing our understanding of the pathways of development of addiction and risk prediction. Perhaps more importantly, this knowledge may help identify subtypes of addiction that require different interventions leading to personalized treatment with increased success rates.
PUBLIC HEALTH RELEVANCE: Although progress has been made in terms of understanding the heritable aspects of substance and alcohol use disorders, few specific genetic risk factors have been identified. This is partly because the small changes in susceptibility to these disorders conferred by relevant genetic variations are individually very difficult to detect, and currently used statistical approaches for analysis of genetic data are not optimal for this challenging task. The research proposed in this application aims to develop alternative methods for analyzing genetic data, assess the performance of the proposed methods, and apply the methods to existing genetic data on substance use disorders to identify genetic risk factors for addiction and related traits.
描述(由申请人提供):对酒精和物质依赖的易感性受遗传因素的影响。然而,很少发现改变成瘾易感性的特定遗传变异。这在一定程度上是因为成瘾是一种多基因特征,受许多遗传变异的影响,每个变异都有很小的边际效应。然而,这些遗传变异的集体效应及其与其他遗传和环境因素的相互作用可能对酒精和其他物质使用障碍及相关表型的易感性非常重要。目前尚不清楚哪种研究设计和分析方法最适合用于检测导致复杂性状的相互作用的危险因素。不幸的是,用于分析遗传数据的常用统计方法可能不适合这项具有挑战性的任务。我们研究的长期目标是通过应用最佳统计技术,提高对导致物质/酒精使用障碍发展的相互作用的遗传和环境风险因素的检测。本申请中提出的研究旨在开发分析遗传数据的替代方法,评估所提出方法的性能,并重要地将这些方法应用于物质使用障碍的现有遗传数据。特别是,基于随机森林的方法和相关的基于重采样的数据挖掘方法将被考虑。发展领域将包括评估单倍型和基因水平效应的方法,新的排列算法,以及检测相互作用因素的能力的改进。我们将在用户友好的软件中实现这些方法,这些软件能够分析基因组全关联扫描产生的大量数据。模拟将用于评估新方法的性能,并将其与传统的遗传关联测试方法进行比较。在本研究项目中开发的最佳方法将应用于现有的物质依赖和其他成瘾相关表型的数据集。具体而言,将分析由Laura Bierut博士及其同事收集的NICSNP项目和成瘾:遗传与环境研究(SAGE)的病例对照数据。利用解释遗传相互作用的新统计方法对现有数据进行分析,很有可能查明导致对药物滥用和依赖易感性的个体差异的新的遗传变异。发现影响物质依赖和相关疾病的遗传和环境因素,或这些疾病的治疗结果,具有重要的意义,包括增加我们对成瘾发展途径和风险预测的理解。也许更重要的是,这些知识可能有助于识别需要不同干预措施的成瘾亚型,从而提高个性化治疗的成功率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joanna M Biernacka其他文献
450. In Bipolar Disorder, SLC1A2 Promoter Hypomethylation is Associated with Binge Eating Disorder and Nicotine Dependance
- DOI:
10.1016/j.biopsych.2017.02.934 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Marin Veldic;Yun-Fang Jia;YuBin Choi;Jennifer R Ayers-Ringler;Joanna M Biernacka;Jennifer R Geske;Susan McElroy;Mark Frye;Doo-Sup Choi - 通讯作者:
Doo-Sup Choi
Gene set analysis of SNP data: benefits, challenges, and future directions
单核苷酸多态性数据的基因集分析:益处、挑战和未来方向
- DOI:
10.1038/ejhg.2011.57 - 发表时间:
2011-04-13 - 期刊:
- 影响因子:4.600
- 作者:
Brooke L Fridley;Joanna M Biernacka - 通讯作者:
Joanna M Biernacka
Joanna M Biernacka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joanna M Biernacka', 18)}}的其他基金
Genomics of Alcohol Withdrawal and Treatment Response to Benzodiazepines
酒精戒断的基因组学和苯二氮卓类药物的治疗反应
- 批准号:
10497622 - 财政年份:2023
- 资助金额:
$ 18.32万 - 项目类别:
2/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
2/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10406330 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
2/4: Leveraging EHR-linked biobanks for deep phenotyping, polygenic risk score modeling, and outcomes analysis in psychiatric disorders
2/4:利用与 EHR 相关的生物库进行精神疾病的深度表型分析、多基因风险评分建模和结果分析
- 批准号:
10176262 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
PHARMACOGENOMICS OF ACAMPROSATE TREATMENT OUTCOME
阿坎酸治疗结果的药物基因组学
- 批准号:
10477435 - 财政年份:2018
- 资助金额:
$ 18.32万 - 项目类别:
PHARMACOGENOMICS OF ACAMPROSATE TREATMENT OUTCOME
阿坎酸治疗结果的药物基因组学
- 批准号:
10007092 - 财政年份:2018
- 资助金额:
$ 18.32万 - 项目类别:
PHARMACOGENOMICS OF ACAMPROSATE TREATMENT OUTCOME
阿坎酸治疗结果的药物基因组学
- 批准号:
9767646 - 财政年份:2018
- 资助金额:
$ 18.32万 - 项目类别:
PHARMACOGENOMICS OF ACAMPROSATE TREATMENT OUTCOME
阿坎酸治疗结果的药物基因组学
- 批准号:
10000815 - 财政年份:2018
- 资助金额:
$ 18.32万 - 项目类别:
Pharmacogenomics of Treatment Outcomes in Alcohol Use Disorders
酒精使用障碍治疗结果的药物基因组学
- 批准号:
9164922 - 财政年份:2016
- 资助金额:
$ 18.32万 - 项目类别:
Pharmacogenomics of Treatment Outcomes in Alcohol Use Disorders
酒精使用障碍治疗结果的药物基因组学
- 批准号:
9315679 - 财政年份:2016
- 资助金额:
$ 18.32万 - 项目类别:
Methods for detecting interacting risk factors for addictions
检测成瘾相互作用危险因素的方法
- 批准号:
7897098 - 财政年份:2010
- 资助金额:
$ 18.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant