Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
基本信息
- 批准号:8241552
- 负责人:
- 金额:$ 23.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnimalsArtificial cardiac pacemakerBiocompatibleBody FluidsBone TissueCell ProliferationCellsChildClinicalConsultCorrosionCosmeticsCouplingDataDevelopmentDevicesDrug Delivery SystemsElectric StimulationElectrochemistryElectrodesElectronicsEvaluationExcisionFractureFrequenciesGoalsGuidelinesHistocompatibilityImageImplantIn VitroInfectionLeftLifeLife Cycle StagesMagnesiumMedical DeviceMethodsModelingMonitorMusculoskeletal PhysiologyNatural regenerationNerveNormal tissue morphologyOperative Surgical ProceduresOryctolagus cuniculusPain managementPostoperative PainPower SourcesRadioRattusResearchResourcesServicesSimulateSpinalSpinal FusionStem cellsSurgeonSystemSystems DevelopmentTechnologyTestingTherapeuticTimeTissue EngineeringTissuesTitaniaTitaniumWireless Technologybasebiomaterial compatibilitybonebone marrow stromal stem celldesignimplantable deviceimplantationin vivonovelnovel strategiesosteoblast differentiationplatinum electrodereconstructionrepairedresearch studyresponsesubcutaneoustechnology development
项目摘要
DESCRIPTION (provided by applicant): Implantable biodegradable electronic devices for medical applications offer the potential to provide therapeutic or monitoring functions for limited periods of time - weeks to months - degrading in register with the anticipated needs of the application and thus not requiring surgical removal. However, numerous technologies remain to be developed to enable practical biodegradable electronic systems. The goal of this R21 is to develop completely biodegradable radio frequency (RF) power generators and stimulating electrodes as novel platform technology for enabling a variety of surgically implantable biodegradable electronic devices. The generators and electrodes will be designed according to electrical specifications and forms that are compatible with their incorporation into a biodegradable spinal fusion stimulator as a paradigm application of this technology. Our novel approach will be to use RF coil circuits based on biocompatible and bioresorbable magnesium alloy conductive and resistive components, and also use this same alloy as the material for the electrodes. Using the electrical specifications of existing, non-degradable spinal fusion stimulators in clinical use for guidelines, we will design, fabricate, and test RF coil circuits and stimulating electrodes to deliver constant current stimulation. Stem cell proliferative and differentiative responses to the stimulating electrodes will be assessed in vitro and compared with responses to conventional non-degradable electrodes. Pilot experiments to assess electrode degradation and tissue compatibility will be assessed in vivo in a tethered hard-wired subcutaneous rat model. Functionality and coupling efficiency of the RF coil circuit will be assessed in vitro in simulated body fluid. Successful completion of these aims, as demonstrated by confirming predicted cellular responses and component functionalities over time, will establish the basis for follow-on research addressing component optimizations and complete system development, including integration with active electronics, and testing in an animal spinal fusion model.
PUBLIC HEALTH RELEVANCE: The objective of this study to demonstrate feasibility of key components for implantable biodegradable electronic devices that need only function temporarily, such as an electrical stimulator for spinal fusion, or in more general terms, for stimulating repair and remodeling of tissue engineered constructs, fractures, or grafts. This technology would make electrical stimulation a more practical and acceptable therapeutic option by overcoming the barriers to clinical acceptance of permanent implants that only need to function for relatively short periods of time after implantation and may require surgical removal at the end of their service life.
描述(由申请人提供):用于医疗应用的可植入生物可降解电子设备有可能在有限的时间内(数周至数月)提供治疗或监测功能,并根据应用的预期需求进行降解,因此不需要手术切除。然而,仍有许多技术有待开发,以实现实用的可生物降解电子系统。 R21 的目标是开发完全可生物降解的射频 (RF) 发电机和刺激电极,作为新型平台技术,用于实现各种可通过手术植入的可生物降解电子设备。发生器和电极将根据电气规格和形式进行设计,这些规格和形式与它们并入可生物降解的脊柱融合刺激器兼容,作为该技术的范例应用。我们的新颖方法是使用基于生物相容性和可生物再吸收的镁合金导电和电阻组件的射频线圈电路,并使用相同的合金作为电极材料。使用临床使用的现有不可降解脊柱融合刺激器的电气规格作为指导,我们将设计、制造和测试射频线圈电路和刺激电极以提供恒定电流刺激。将在体外评估干细胞对刺激电极的增殖和分化反应,并与对传统不可降解电极的反应进行比较。将在拴系硬连线皮下大鼠模型中进行体内评估电极降解和组织相容性的试点实验。射频线圈电路的功能和耦合效率将在体外模拟体液中进行评估。通过确认随着时间的推移预测的细胞反应和组件功能,成功完成这些目标将为解决组件优化和完整系统开发的后续研究奠定基础,包括与有源电子设备的集成以及在动物脊柱融合模型中的测试。
公共健康相关性:本研究的目的是证明仅需要暂时发挥作用的可植入生物可降解电子设备关键组件的可行性,例如用于脊柱融合的电刺激器,或者更一般地说,用于刺激组织工程结构、骨折或移植物的修复和重塑。这项技术将使电刺激成为更实用和更可接受的治疗选择,克服永久植入物临床接受的障碍,永久植入物只需要在植入后相对较短的时间内发挥作用,并且可能需要在使用寿命结束时进行手术切除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHIL GORDON CAMPBELL其他文献
PHIL GORDON CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHIL GORDON CAMPBELL', 18)}}的其他基金
Clickable Extracellular Vesicles to Silk-Based Biomaterials for Regenerative Medicine
用于再生医学的可点击细胞外囊泡到丝基生物材料
- 批准号:
10642420 - 财政年份:2023
- 资助金额:
$ 23.22万 - 项目类别:
Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
- 批准号:
8327170 - 财政年份:2011
- 资助金额:
$ 23.22万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
7060419 - 财政年份:2005
- 资助金额:
$ 23.22万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
6851399 - 财政年份:2005
- 资助金额:
$ 23.22万 - 项目类别:
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 23.22万 - 项目类别:
Studentship
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
- 批准号:
LP210301261 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
- 批准号:
FT230100683 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 23.22万 - 项目类别:
Studentship














{{item.name}}会员




