Phospholipid Flip-flop in Biogenic Membranes
生物膜中的磷脂触发器
基本信息
- 批准号:8010138
- 负责人:
- 金额:$ 35.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2013-11-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseATP-Binding Cassette TransportersAbbreviationsAcetylcholinesteraseActive Biological TransportAffinityAnabolismAntibodiesB cell differentiationB-LymphocytesBacteriaBiochemicalBiochemical GeneticsBiologicalCarrier ProteinsCell WallCell membraneCell surfaceCollectionConcanavalin ADataDiffusionDissectionDolicholDolichol PhosphatesEmbryoEndoplasmic ReticulumEscherichia coliEukaryotaFaceFamilyFoundationsGeneticGlucoseGlycerophospholipidsGlycoconjugatesGlycolipidsGlycoproteinsGlycosphingolipidsGlycosylphosphatidylinositolsGoalsHeadHumanIn VitroLateralLecithinLinkLipidsLipopolysaccharidesLiverMammalsMannoseMass Spectrum AnalysisMembraneMembrane LipidsMembrane ProteinsMicrobial PhysiologyMolecularNeural Cell Adhesion MoleculesO AntigensOligosaccharidesOrganellesPhospholipidsPlasmaPlayPolysaccharidesPositioning AttributePost-Translational Protein ProcessingPreparationProtein GlycosylationProtein PrecursorsProteinsPublishingRattusReactionResearchRoleScreening procedureSideSpecificitySystemThin Layer ChromatographyTimeTritonTritonsWorkYeastscell growthcholeragen receptordolichol pyrophosphateglycosylationin vivointerestlipid transportmanmannose-phosphate-citronellolmannosyl(5)-N-acetyl(2)-glucosemembrane biogenesisnovelprotein purificationpublic health relevancereconstitution
项目摘要
DESCRIPTION (provided by applicant): The bi-directional translocation of lipids from one side of a biological membrane to the other is termed flip-flop. Lipid flip-flop across the endoplasmic reticulum (ER) membrane is required for protein N-glycosylation and GPI-anchoring. These protein modifications are essential in eukaryotes; for example, their genetic abrogation causes embryonic lethality in mammals and renders yeast unviable. Lipid flip-flop across the ER is also required for membrane biogenesis: phospholipids that are synthesized on the cytoplasmic face of the ER must be translocated to the opposite face to enable the membrane bilayer to grow uniformly. The demand for lipid flip-flop at the ER is likely to be exceptionally high when the ER membrane expands and glycoprotein secretion increases; this occurs, for example, during the differentiation of B-lymphocytes to antibody-secreting plasma B cells. Unassisted flip-flop is extremely slow because of the energy barrier to taking the polar lipid head group through the hydrophobic interior of the membrane, yet lipids flip-flop rapidly across the ER membrane on a time-scale of seconds. This is because the ER possesses specific transport proteins (flippases) that accelerate lipid flipping to a physiologically sufficient rate. Lipid flipping in the ER occurs by an ATP-independent mechanism in which the flippases facilitate 'downhill' transport of lipids; this distinguishes ER flippases from other translocators, typically found in the eukaryotic plasma membrane, that couple ATP hydrolysis to concentrative 'uphill' transport of lipids. We estimate that there are as many as six different ER lipid flippases but none of these have been identified at the molecular level. We developed biochemical reconstitution systems that recapitulate the activity of three of the flippases required for ER membrane bilayer expansion and protein glycosylation. These flippases specifically translocate glycerophospholipids, oligosaccharide diphosphate dolichols and mannose-phosphate dolichol. Our aim is to identify these physiologically important translocators with the long-term goal of understanding their mechanism of action. We propose to do this via a two-pronged approach involving protein purification and mass spectrometry on the one hand, and screening of systematic collections of yeast ER membrane proteins on the other. Our purification efforts will be aided by the use of novel affinity matrices. We will also use partially purified flippase preparations to continue our efforts to define the specificity of these proteins. Our published work and preliminary data put us in an excellent position to accomplish these aims.
PUBLIC HEALTH RELEVANCE: Flipping of lipids from one side of a biological membrane to the other is necessary for membrane expansion during cell growth, as well as for the biosynthesis of molecules that play critical roles in human and microbial physiology. These molecules include glycoproteins such as the neural cell adhesion molecule, GPI-anchored proteins such as acetylcholinesterase, glycolipids such as the receptor for cholera toxin, components of the cell walls of bacteria and yeast, and the O-antigen of E. coli lipopolysaccharide. We are interested in identifying the transport proteins that catalyze lipid flipping in yeast and mammals and understanding how they work.
描述(由申请人提供):脂质从生物膜的一侧到另一侧的双向易位称为触发器。蛋白质 N-糖基化和 GPI 锚定需要跨内质网 (ER) 膜的脂质翻转。这些蛋白质修饰对于真核生物至关重要。例如,它们的基因缺失会导致哺乳动物胚胎死亡,并使酵母无法生存。跨内质网的脂质翻转也是膜生物发生所必需的:内质网细胞质面上合成的磷脂必须转移到相反的一面,以使膜双层均匀生长。当内质网膜扩张且糖蛋白分泌增加时,内质网对脂质触发器的需求可能会异常高;例如,这种情况发生在 B 淋巴细胞分化为分泌抗体的血浆 B 细胞的过程中。 由于极性脂质头基通过膜的疏水内部存在能量障碍,无辅助的翻转极其缓慢,但脂质在数秒的时间尺度内快速翻转穿过内质网膜。这是因为内质网拥有特定的转运蛋白(翻转酶),可以将脂质翻转加速到生理上足够的速率。内质网中的脂质翻转是通过一种不依赖于 ATP 的机制发生的,其中翻转酶促进脂质的“下坡”运输;这将 ER 翻转酶与其他易位蛋白区分开来,其他易位蛋白通常存在于真核生物质膜中,将 ATP 水解与脂质的集中“上坡”运输结合起来。 我们估计有多达六种不同的内质网脂质翻转酶,但这些酶均未在分子水平上得到鉴定。我们开发了生化重建系统,该系统概括了内质网膜双层扩张和蛋白质糖基化所需的三种翻转酶的活性。这些翻转酶特异性易位甘油磷脂、寡糖二磷酸多醇和甘露糖磷酸多醇。我们的目标是识别这些生理上重要的易位蛋白,长期目标是了解它们的作用机制。我们建议通过双管齐下的方法来做到这一点,一方面涉及蛋白质纯化和质谱分析,另一方面对酵母内质网膜蛋白的系统收集进行筛选。我们的纯化工作将通过使用新型亲和基质得到帮助。我们还将使用部分纯化的翻转酶制剂来继续努力确定这些蛋白质的特异性。我们已发表的工作和初步数据使我们处于实现这些目标的绝佳位置。
公共卫生相关性:脂质从生物膜的一侧翻转到另一侧对于细胞生长过程中的膜扩张以及在人类和微生物生理学中发挥关键作用的分子的生物合成是必要的。这些分子包括糖蛋白(如神经细胞粘附分子)、GPI 锚定蛋白(如乙酰胆碱酯酶)、糖脂(如霍乱毒素受体)、细菌和酵母细胞壁的成分以及大肠杆菌脂多糖的 O 抗原。我们感兴趣的是识别在酵母和哺乳动物中催化脂质翻转的转运蛋白并了解它们的工作原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANANT K MENON其他文献
ANANT K MENON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANANT K MENON', 18)}}的其他基金
Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
- 批准号:
10700974 - 财政年份:2022
- 资助金额:
$ 35.41万 - 项目类别:
Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
- 批准号:
10510784 - 财政年份:2022
- 资助金额:
$ 35.41万 - 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
- 批准号:
8267601 - 财政年份:2011
- 资助金额:
$ 35.41万 - 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
- 批准号:
8196655 - 财政年份:2011
- 资助金额:
$ 35.41万 - 项目类别:
Biosynthesis of Membrane Protein Glycolipid Anchors
膜蛋白糖脂锚的生物合成
- 批准号:
7938503 - 财政年份:2009
- 资助金额:
$ 35.41万 - 项目类别: