Scramblases for protein glycosylation

用于蛋白质糖基化的 Scramblases

基本信息

  • 批准号:
    10420706
  • 负责人:
  • 金额:
    $ 56.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Protein glycosylation is essential in all eukaryotes, from disease-causing protists such as malaria, to yeast and mammals. Secretory proteins are N-glycosylated, O- and C-mannosylated, and/or glycosylphosphatidylinositol (GPI)-anchored as they enter the lumen of the endoplasmic reticulum (ER). Yeast that cannot synthesize N- glycoproteins or GPI-proteins are inviable, and mice with the same defects die as embryos. Glycosylation is important in dengue and SARS-CoV-2 viral infections, and defects in glycosylation cause human disease. Thus, deficient O-mannosylation of dystroglycan is a cause of muscular dystrophy and GPI deficiency in hematopoietic human stem cells underlies the hemolytic disease paroxysmal nocturnal hemoglobinuria. Congenital Disorders of Glycosylation (CDGs) are severe inherited diseases with neurological symptoms. Protein glycosylation reactions require the glycolipids mannosyl- and glucosyl-phosphoryl dolichol (MPD, GPD) to act as sugar donors in the lumen of the ER. As these lipids are synthesized on the cytoplasmic side, they must be flipped across the ER membrane to function in the lumen, a process requiring specific transporters, termed scramblases, that have yet to be identified. Assays of the two scramblases in microsomes and reconstituted vesicles, using natural lipids and short-chain analogs as reporters, reveal that transport is bidirectional, ATP-independent, and highly structure specific, discriminating between structural isomers. We will identify the MPD and GPD scramblases using chemo-proteomic and bioinformatic approaches. Deploying novel photo-clickable probes synthesized by the Häner group (University of Bern) we will determine the MPD and GPD interactomes, that we hypothesize will include the scramblases. Our preliminary results validate this approach: the MPD probe functions in ER mannosylation and photo-identifies specific yeast microsomal proteins. Photo-adducted proteins will be identified by quantitative proteomics and tested for scramblase activity in our reconstitution-based assays. Promising candidates will be validated in vivo by evaluating phenotypes of yeast mutants. For GPD scramblase we will also identify candidates via phylogenetic profiling, a bioinformatics method for assignment of protein function. This approach complements the photo- identification strategy and has already yielded a list of GPD scramblase candidates for testing. This is a consequential proposal to discover critical players in ER protein glycosylation. Our extensive experience in studying scramblases puts us in a strong position to tackle this objective. We discovered the scramblase activity of Class A GPCRs and were the first to show lipid scrambling by a TMEM16 ion channel. We now deploy in silico, biochemical and biophysical methods to elucidate their mechanism. We will use this expertise in future work to reveal the molecular mechanism of structure-specific lipid scrambling mediated by the MPD and GPD scramblases that we predict to be distinct from that of the currently known phospholipid scramblases. At a biological level, our discoveries will reveal new genetic loci associated with CDGs.
蛋白质糖基化在所有真核生物中都是必不可少的,从致病的原生生物(如疟疾)到酵母和酵母

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANANT K MENON其他文献

ANANT K MENON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANANT K MENON', 18)}}的其他基金

Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
  • 批准号:
    10700974
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
Molecular basis of congenital disorder of glycosylation type 1N
1N型先天性糖基化障碍的分子基础
  • 批准号:
    10510784
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
Scramblases for protein glycosylation
用于蛋白质糖基化的 Scramblases
  • 批准号:
    10600063
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
Rhodopsin-mediated phospholipid flipping
视紫红质介导的磷脂翻转
  • 批准号:
    8786659
  • 财政年份:
    2014
  • 资助金额:
    $ 56.34万
  • 项目类别:
Rhodopsin-mediated phospholipid flipping
视紫质介导的磷脂翻转
  • 批准号:
    8895952
  • 财政年份:
    2014
  • 资助金额:
    $ 56.34万
  • 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
  • 批准号:
    8267601
  • 财政年份:
    2011
  • 资助金额:
    $ 56.34万
  • 项目类别:
Structural Analysis of the GPI Transamidase Complex
GPI 转酰胺酶复合物的结构分析
  • 批准号:
    8196655
  • 财政年份:
    2011
  • 资助金额:
    $ 56.34万
  • 项目类别:
Biosynthesis of Membrane Protein Glycolipid Anchors
膜蛋白糖脂锚的生物合成
  • 批准号:
    7938503
  • 财政年份:
    2009
  • 资助金额:
    $ 56.34万
  • 项目类别:
Phospholipid Flip-flop in Biogenic Membranes
生物膜中的磷脂触发器
  • 批准号:
    7080488
  • 财政年份:
    2005
  • 资助金额:
    $ 56.34万
  • 项目类别:
Phospholipid Flip-flop in Biogenic Membranes
生物膜中的磷脂触发器
  • 批准号:
    7255834
  • 财政年份:
    2005
  • 资助金额:
    $ 56.34万
  • 项目类别:

相似海外基金

Reactions of Alkynes with Metal-Coordinated Phosphenium Ions
炔烃与金属配位磷离子的反应
  • 批准号:
    573824-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Exploring the missing reactivity of heteroatom-substituted alkynes
探索杂原子取代的炔烃缺失的反应性
  • 批准号:
    559671-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
LEAPS-MPS: Developing a Spectroscopic Map for Terminal Alkynes
LEAPS-MPS:开发末端炔烃的光谱图
  • 批准号:
    2213339
  • 财政年份:
    2022
  • 资助金额:
    $ 56.34万
  • 项目类别:
    Standard Grant
Development of Synthetic Methods for Hetero-fused pi-Conjugated Compounds Based on Trans-Addition to Alkynes
基于炔烃反式加成的异稠合π共轭化合物的合成方法研究进展
  • 批准号:
    21K05061
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
  • 批准号:
    21F21334
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
  • 批准号:
    10544730
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
  • 批准号:
    10320911
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
Development of beta-carbon elimination reactions of alkynes from unstrained vinyl complexes
无应变乙烯基配合物中炔烃的β-碳消除反应的进展
  • 批准号:
    21K05101
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reactions of Alkynes with Metal-Coordinated Phosphenium Ions
炔烃与金属配位磷离子的反应
  • 批准号:
    563146-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
  • 批准号:
    10581995
  • 财政年份:
    2021
  • 资助金额:
    $ 56.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了