In Vivo Regulation and Inhibition of Ribonucleotide Reductase

核糖核苷酸还原酶的体内调节和抑制

基本信息

  • 批准号:
    8115960
  • 负责人:
  • 金额:
    $ 30.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The maintenance of adequate and balanced deoxyribonucleotide (dNTP) pools is essential for faithful DNA replication and repair. Loss of normal control of the dNTP pools can lead to cell death, genomic instability, and predisposition to cancer in humans. Regulation of ribonucleotide reductase (RNR) is largely responsible for controlling the relative ratios and amounts of the cellular dNTP pools. The central role of RNR in dNTP biosynthesis has also made it a successful target in the treatment of a number of malignancies. The RNR enzyme comprises of two subunits: the R1 subunit binds the four NDP substrates as well as the allosteric effectors (NTPs and dATP) that govern substrate specificity and turnover rate, and the R2 subunit houses the essential tyrosyl radical required to initiate nucleotide reduction in R1. The enzymatic activity of RNR can be modulated by allostery, transcription, protein inhibitor association, and subcellular compartmentation of its subunits. The budding yeast S. cerevisiae has emerged as a prototypical model system with which to investigate the complex mechanisms regulating the RNR activity. This proposal focuses on the mechanisms that control the RNR activity and consequently cellular dNTP pools by using a combination of biochemical, cell biology, and genetic approaches. Our central hypothesis is that these regulatory mechanisms are integrated to maintain optimal dNTP pools under different growth conditions so as to ensure high fidelity DNA synthesis and repair. Three specific aims are proposed: (1) To test the hypothesis that the Sml1 protein inhibits the RNR enzyme by impeding regeneration of the R1 active site and to define molecular determinants of the R1-Sml1 interaction and Sml1 degradation; (2) To examine the regulation of subcellular localization of the R2 subunit by the cell cycle and DNA damage checkpoints; (3) To characterize the role of the newly identified small protein Sld1 in RNR regulation. Sld1 belongs to a family of small protein RNR regulators, including the S. cerevisiae Sml1 and Sld1, the S. pombe Spd1, and their homologs encoded by other fungal genomes. The emphasis is to gain a mechanistic understanding of how the RNR activity is controlled by these evolutionarily conserved small size RNR regulatory proteins. Lessons learned from studies of the yeast RNR will serve as a paradigm for understanding of RNR regulation and dNTP pool control in eukaryotic cells, and may also suggest new approaches for RNR inhibition and for antitumor and antiviral drug development. PUBLIC HEALTH RELEVENCE: Ribonucleotide reductase is an essential enzyme that provides the building blocks for DNA in all organisms. This enzyme is also a proven target of clinical treatment of human cancers. The overall goal of this project is to understand how the activity of this enzyme is controlled inside the cell and finding new strategy for drug development targeting this enzyme.
描述(由申请方提供):维持足够和平衡的脱氧核糖核苷酸(dNTP)池对于忠实的DNA复制和修复至关重要。dNTP池的正常控制的丧失可导致细胞死亡、基因组不稳定性和人类癌症易感性。核糖核苷酸还原酶(RNR)的调节在很大程度上负责控制细胞dNTP池的相对比率和量。RNR在dNTP生物合成中的核心作用也使其成为治疗许多恶性肿瘤的成功靶标。RNR酶由两个亚基组成:R1亚基结合四种NDP底物以及控制底物特异性和周转率的变构效应物(NTP和dATP),R2亚基包含启动R1中核苷酸还原所需的必需酪氨酰自由基。RNR的酶活性可以通过变构、转录、蛋白质抑制剂缔合和其亚基的亚细胞区室化来调节。芽殖酵母S.酿酒酵母已经成为研究调节RNR活性的复杂机制的原型模型系统。该提案的重点是通过使用生物化学,细胞生物学和遗传方法的组合来控制RNR活性和因此细胞dNTP池的机制。我们的中心假设是,这些调节机制是整合在一起的,以保持最佳的dNTP池在不同的生长条件下,以确保高保真的DNA合成和修复。本研究的主要目的是:(1)验证Sm 11蛋白通过抑制R1活性位点的再生来抑制RNR酶的假说,并确定R1-Sm 11相互作用和Sm 11降解的分子决定因素:(2)研究细胞周期和DNA损伤检查点对R2亚基亚细胞定位的调控;(3)研究新发现的小分子蛋白Sld 1在RNR调控中的作用。Sld 1属于小蛋白RNR调节子家族,包括S.酿酒酵母Sml 1和Sld 1,S.粟酒裂殖酵母Spd 1及其由其他真菌基因组编码的同源物。重点是获得RNR活性是如何控制这些进化上保守的小尺寸RNR调节蛋白的机制的理解。从酵母RNR的研究中吸取的教训将作为一个范例,了解RNR的调节和dNTP池控制在真核细胞,也可能建议新的方法RNR抑制和抗肿瘤和抗病毒药物的开发。公共卫生解放:核糖核苷酸还原酶是一种重要的酶,为所有生物体的DNA提供基石。这种酶也是临床治疗人类癌症的一个已证实的靶标。该项目的总体目标是了解这种酶的活性是如何在细胞内控制的,并找到针对这种酶的药物开发的新策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MINGXIA HUANG其他文献

MINGXIA HUANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MINGXIA HUANG', 18)}}的其他基金

Neurovascular unit dysfunction in Down syndrome revealed by TBI
TBI揭示唐氏综合症的神经血管单元功能障碍
  • 批准号:
    10518832
  • 财政年份:
    2022
  • 资助金额:
    $ 30.8万
  • 项目类别:
In Vivo Regulation and Inhibition of Ribonucleotide Reductase
核糖核苷酸还原酶的体内调节和抑制
  • 批准号:
    7894601
  • 财政年份:
    2008
  • 资助金额:
    $ 30.8万
  • 项目类别:
In Vivo Regulation and Inhibition of Ribonucleotide Reductase
核糖核苷酸还原酶的体内调节和抑制
  • 批准号:
    7613516
  • 财政年份:
    2008
  • 资助金额:
    $ 30.8万
  • 项目类别:
In Vivo Regulation and Inhibition of Ribonucleotide Reductase
核糖核苷酸还原酶的体内调节和抑制
  • 批准号:
    7464925
  • 财政年份:
    2008
  • 资助金额:
    $ 30.8万
  • 项目类别:
In Vivo Regulation and Inhibition of Ribonucleotide Reductase
核糖核苷酸还原酶的体内调节和抑制
  • 批准号:
    8289364
  • 财政年份:
    2008
  • 资助金额:
    $ 30.8万
  • 项目类别:
Function and Regulation of DNA Damage Response Genes
DNA损伤反应基因的功能和调控
  • 批准号:
    6860170
  • 财政年份:
    2003
  • 资助金额:
    $ 30.8万
  • 项目类别:
Function and Regulation of DNA Damage Response Genes
DNA损伤反应基因的功能和调控
  • 批准号:
    6576098
  • 财政年份:
    2003
  • 资助金额:
    $ 30.8万
  • 项目类别:
Function and Regulation of DNA Damage Response Genes
DNA损伤反应基因的功能和调控
  • 批准号:
    7192534
  • 财政年份:
    2003
  • 资助金额:
    $ 30.8万
  • 项目类别:
Function and Regulation of DNA Damage Response Genes
DNA损伤反应基因的功能和调控
  • 批准号:
    6705003
  • 财政年份:
    2003
  • 资助金额:
    $ 30.8万
  • 项目类别:
Function and Regulation of DNA Damage Response Genes
DNA损伤反应基因的功能和调控
  • 批准号:
    7025098
  • 财政年份:
    2003
  • 资助金额:
    $ 30.8万
  • 项目类别:

相似海外基金

Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 30.8万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 30.8万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10368975
  • 财政年份:
    2021
  • 资助金额:
    $ 30.8万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10365254
  • 财政年份:
    2021
  • 资助金额:
    $ 30.8万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10202896
  • 财政年份:
    2021
  • 资助金额:
    $ 30.8万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10531570
  • 财政年份:
    2021
  • 资助金额:
    $ 30.8万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10541847
  • 财政年份:
    2019
  • 资助金额:
    $ 30.8万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10319573
  • 财政年份:
    2019
  • 资助金额:
    $ 30.8万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10062790
  • 财政年份:
    2019
  • 资助金额:
    $ 30.8万
  • 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
  • 批准号:
    DE170100628
  • 财政年份:
    2017
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了