Neural Basis of Depth Perception

深度知觉的神经基础

基本信息

  • 批准号:
    8204030
  • 负责人:
  • 金额:
    $ 47.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-05 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We live in a three-dimensional (3D) environment, and accurate perception of the 3D structure of the visual scene is crucial for many daily activities. Although much is known about human perception of depth from multiple cues (such as binocular disparity, motion parallax, and texture), our understanding of the neural mechanisms of depth perception remains very incomplete. This proposal addresses three fundamental issues regarding the neural basis of depth perception. Aim #1 examines the neural representation of 3D surface structure based on smooth spatial variations in binocular disparity. We will characterize how neurons in extrastriate visual cortex code the orientation and spatial frequency of depth corrugations defined by disparity gradients, and we will explore whether linear or nonlinear receptive field mechanisms are involved in such selectivity. In addition, we will reversibly inactivate these brain regions to probe for causal links between neural activity and perception of disparity-defined surface structure. Aim #2 provides the first direct tests of a potential neural substrate for depth perception from motion parallax. We will train monkeys to discriminate depth from motion parallax, and will use single-unit recordings and electrical microstimulation to test the hypothesis that area MT plays an important functional role in this form of depth perception. Aim #3 tackles a major unexplored question: how do we detect objects moving in 3D space during self-motion? We have devised a novel behavioral task to demonstrate that detecting inconsistencies between two depth cues--disparity and motion parallax--provides a robust mechanism for detecting object motion, and we test the hypothesis that neurons in area MT with incongruent depth tuning for disparity and motion parallax play an important role in this process. This research addresses the general problem of how neural circuits extract specialized information from the visual scene that is computationally important for solving specific behavioral tasks, and thus has broad application to many problems in systems neuroscience. The proposed research is directly relevant to the research priorities of the Strabismus, Amplyopia, and Visual Processing program at the National Eye Institute. PUBLIC HEALTH RELEVANCE: The health-related value of this work will follow from a deeper understanding of how cognitive functions can be explained in terms of neural activity, as this will ultimately elucidate causes of various mental disorders. This work will also likely have practical applications to the development and assessment of 3D virtual environments which have growing importance in both commercial and entertainment applications. Basic science will aid development of virtual environments that are compelling, safe, and ergonomic.
描述(由申请人提供):我们生活在一个三维(3D)的环境中,准确感知视觉场景的3D结构对许多日常活动至关重要。虽然我们对人类从多种线索(如双眼视差、运动视差和纹理)感知深度的了解很多,但我们对深度感知的神经机制的理解仍然非常不完整。这一建议解决了关于深度感知的神经基础的三个基本问题。Aim #1研究基于双目视差平滑空间变化的三维表面结构的神经表征。我们将描述层外视觉皮层的神经元如何编码由视差梯度定义的深度波的方向和空间频率,我们将探索线性或非线性感受野机制是否参与这种选择性。此外,我们将可逆地使这些大脑区域失活,以探索神经活动与感知差异定义的表面结构之间的因果关系。Aim #2为运动视差深度感知的潜在神经基础提供了第一个直接测试。我们将训练猴子区分深度和运动视差,并将使用单单元记录和电微刺激来验证MT区域在这种形式的深度感知中起重要作用的假设。Aim #3解决了一个未被探索的主要问题:我们如何在自我运动期间检测3D空间中移动的物体?我们设计了一个新的行为任务来证明检测两个深度线索(视差和运动视差)之间的不一致性为检测物体运动提供了一个强大的机制,并且我们测试了MT区域中对视差和运动视差进行不一致深度调整的神经元在这一过程中发挥重要作用的假设。本研究解决了神经回路如何从视觉场景中提取对解决特定行为任务具有重要计算意义的专门信息的一般问题,因此在系统神经科学的许多问题中具有广泛的应用。这项拟议的研究直接关系到国家眼科研究所斜视、弱视和视觉处理项目的研究重点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GREGORY C DEANGELIS其他文献

GREGORY C DEANGELIS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GREGORY C DEANGELIS', 18)}}的其他基金

Administrative
行政的
  • 批准号:
    10225401
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Project B: Neural basis of causal inference and sensory updating in trial-based tasks in monkeys
项目 B:猴子试验任务中因果推理和感觉更新的神经基础
  • 批准号:
    10225404
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Neural Basis of Causal Inference: Representations, Circuits, and Dynamics
因果推理的神经基础:表示、电路和动力学
  • 批准号:
    10615006
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Administrative
行政的
  • 批准号:
    10615027
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Administrative
行政的
  • 批准号:
    10400143
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Neural Basis of Causal Inference: Representations, Circuits, and Dynamics
因果推理的神经基础:表示、电路和动力学
  • 批准号:
    10400142
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Neural basis of causal inference: representations, circuits, and dynamics
因果推理的神经基础:表征、电路和动力学
  • 批准号:
    10225399
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Project B: Neural basis of causal inference and sensory updating in trial-based tasks in monkeys
项目 B:猴子试验任务中因果推理和感觉更新的神经基础
  • 批准号:
    10615047
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Project B: Neural basis of causal inference and sensory updating in trial-based tasks in monkeys
项目 B:猴子试验任务中因果推理和感觉更新的神经基础
  • 批准号:
    10400147
  • 财政年份:
    2020
  • 资助金额:
    $ 47.21万
  • 项目类别:
Neural Basis of Object Motion Perception During Self-Motion
自我运动过程中物体运动感知的神经基础
  • 批准号:
    8788405
  • 财政年份:
    2014
  • 资助金额:
    $ 47.21万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 47.21万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 47.21万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了