Unraveling folding and mechanism of a small model ribozyme

揭示小型核酶模型的折叠和机制

基本信息

  • 批准号:
    8211485
  • 负责人:
  • 金额:
    $ 34.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-01-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Ribozymes are ideal model systems for the vast number of non-protein coding RNAs found in all domains of life, since they have an easily detectable biological function - catalysis. They also are of high biological and biotechnological relevance in their own right for their roles in the processing and regulation of genetic information. Yet, a quarter century after their discovery, our understanding of catalysis by ribozymes still pales compared to that of catalysis by protein enzymes. Over the last two funding cycles, the PI's group has made substantial contributions to our understanding of the folding and mechanism of the class of small ribozymes. All five members of this class were investigated to varying degrees, with particular focus on the hammerhead and hepatitis delta virus (HDV) ribozymes. Several important discoveries were also made on the hairpin ribozyme as a particularly intriguing model system, on which we will follow up during the current funding period, bringing to bear our signature integration of biophysical and biochemical tools. In Specific Aim 1, we will test the hypothesis that the persistent folding heterogeneity of the hairpin ribozyme, observed at the single molecule level, is caused by slow repuckering of specific nucleotide sugars. Similar folding heterogeneity of chemically identical isomers has been observed for a number of RNAs when (re)folded in vitro, but still lacks a molecular explanation. We have recently succeeded in avoiding this heterogeneity when natively purifying the RNA directly from an in vitro transcription reaction, paving the way for investigating the molecular basis of folding heterogeneity in the hairpin ribozyme by a combination of single molecule fluorescence resonance energy transfer (smFRET), footprinting, and molecular dynamics (MD) simulations. In Specific Aim 2, in collaboration with Jiri Sponer, a computational scientist and long-standing collaborator, and Joseph Wedekind, an X-ray crystallographer, we will test the hypothesis that a network of global molecular motions in the hairpin ribozyme has an impact on those local molecular motions that lead to catalysis. Such a linkage has been suggested for protein enzymes, but has not been rigorously tested for any ribozyme. To this end, we will introduce site-specific modifications into the hairpin ribozyme and probe, using a combination of enzymology, smFRET, X-ray crystallography, and MD simulation, the impact of each of these modifications on local and global structure, dynamics, and function. In Specific Aim 3, we will test a set of specific mechanistic proposals for the role of A38 and water in catalysis of the hairpin ribozyme. This aim follows up on our previous observation that a judiciously placed A38 residue is flanked in the solvent- protected catalytic core by several tightly bound water molecules. We will pursue a broadly sampled QM/MM treatment of the catalytic reaction in collaboration with Jiri Sponer and Joseph Wedekind, as well as quantum chemist Michal Otyepka. We anticipate that results from these three Specific Aims will significantly deepen our understanding of the biological function of non-coding RNAs in general. PUBLIC HEALTH RELEVANCE: Ribozymes are ideal model systems for the vast number of non-protein coding RNAs found in all domains of life, since they have an easily detectable biological function - catalysis. They also are of high biological and biotechnological relevance in their own right for their roles in the processing and regulation of genetic information. In this project renewal, three enigmatic hallmarks of a small model ribozyme, the hairpin ribozyme, will be mechanistically dissected to deepen our understanding of biologically relevant non-coding RNAs in general.
描述(申请人提供):核酶是生命所有领域中发现的大量非蛋白质编码RNA的理想模型系统,因为它们具有易于检测的生物功能-催化。由于它们在处理和管理遗传信息方面的作用,它们本身也具有高度的生物和生物技术相关性。然而,在他们发现四分之一个世纪后,我们对核酶催化的理解仍然比不上蛋白质酶的催化。在过去的两个资助周期中,PI的小组为我们理解小核酶的折叠和机制做出了实质性的贡献。这一类别的所有五名成员都进行了不同程度的调查,特别是锤头和丁型肝炎病毒(HDV)核酶。发夹核酶作为一种特别耐人寻味的模型系统也有几项重要发现,我们将在当前的资助期内对其进行跟踪,使我们标志性的生物物理和生化工具集成在一起。在特定的目标1中,我们将检验这样的假设,即在单分子水平上观察到的发夹状核酶的持续折叠异质性是由特定核苷酸糖的缓慢再折叠引起的。在体外折叠时,许多RNA在化学上相同的异构体也观察到了相似的折叠异质性,但仍然缺乏分子解释。我们最近成功地从体外转录反应中直接从天然纯化的RNA中避免了这种异质性,为通过单分子荧光共振能量转移(SmFRET)、足迹和分子动力学(MD)模拟研究发夹状核酶折叠异质性的分子基础铺平了道路。在特定目标2中,我们将与计算科学家兼长期合作者Jiri Sponer和X射线结晶学家Joseph Wedekin合作,测试发夹核酶中的全球分子运动网络对导致催化的局部分子运动的影响这一假设。蛋白质酶存在这样的关联,但还没有对任何核酶进行严格的测试。为此,我们将把位点特异性的修饰引入发夹状核酶中,并结合酶学、smFRET、X射线结晶学和MD模拟,探索每一种修饰对局部和整体结构、动力学和功能的影响。在特定的目标3中,我们将测试一组关于A38和水在发夹核酶催化中的作用的特定机制建议。这一目标延续了我们之前的观察,即在溶剂保护的催化核心中,A38残基被几个紧密结合的水分子包围。我们将与Jiri Sponer和Joseph Wedekin以及量子化学家Michal Otyepka合作,对催化反应进行广泛采样的QM/MM处理。我们预计,这三个特定目标的结果将极大地加深我们对非编码RNA一般生物学功能的理解。 与公共卫生相关:核酶是生命所有领域中发现的大量非蛋白质编码RNA的理想模型系统,因为它们具有易于检测的生物功能-催化。由于它们在处理和管理遗传信息方面的作用,它们本身也具有高度的生物和生物技术相关性。在这个项目的更新中,一个小模型核酶的三个神秘的特征,发夹状核酶,将被机械地解剖,以加深我们对生物相关的非编码RNA的总体理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NILS G WALTER其他文献

NILS G WALTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NILS G WALTER', 18)}}的其他基金

The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
  • 批准号:
    10613420
  • 财政年份:
    2019
  • 资助金额:
    $ 34.89万
  • 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
  • 批准号:
    9920170
  • 财政年份:
    2019
  • 资助金额:
    $ 34.89万
  • 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
  • 批准号:
    10390477
  • 财政年份:
    2019
  • 资助金额:
    $ 34.89万
  • 项目类别:
Administrative Supplement for a Cytosurge FluidFM OMNIUM instrument: The RNA nanomachines of the gene expression machinery dissected at the single molecule level
Cytosurge FluidFM OMNIUM 仪器的行政补充:在单分子水平上解剖的基因表达机器的 RNA 纳米机器
  • 批准号:
    10797186
  • 财政年份:
    2019
  • 资助金额:
    $ 34.89万
  • 项目类别:
Administrative Supplement for a Turnkey Fluorescence Microscope: Riboswitch mechanism unraveled at the single molecule level
交钥匙荧光显微镜的管理补充:在单分子水平上揭示核糖开关机制
  • 批准号:
    9894327
  • 财政年份:
    2019
  • 资助金额:
    $ 34.89万
  • 项目类别:
Single-molecule counting of cancer biomarker miRNAs in human biofluids
人体生物体液中癌症生物标志物 miRNA 的单分子计数
  • 批准号:
    9233284
  • 财政年份:
    2017
  • 资助金额:
    $ 34.89万
  • 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
  • 批准号:
    9357619
  • 财政年份:
    2016
  • 资助金额:
    $ 34.89万
  • 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
  • 批准号:
    9079585
  • 财政年份:
    2016
  • 资助金额:
    $ 34.89万
  • 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
  • 批准号:
    8641463
  • 财政年份:
    2013
  • 资助金额:
    $ 34.89万
  • 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
  • 批准号:
    8785654
  • 财政年份:
    2013
  • 资助金额:
    $ 34.89万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 34.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了