The RNA nanomachines of the gene expression machinery dissected at the single molecule level

在单分子水平上剖析基因表达机器的RNA纳米机器

基本信息

  • 批准号:
    10613420
  • 负责人:
  • 金额:
    $ 84.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

TITLE: The RNA nanomachines of gene expression dissected at the single molecule level ABSTRACT: Over two decades, the Walter lab has contributed to the RNA field by building a broad research portfolio focused on dissecting the mechanisms of the nanoscale RNA machines of gene expression – ranging from small viroidal ribozymes and bacterial riboswitches to the eukaryotic spliceosome – by single molecule fluorescence microscopy. Leveraging this expertise, the two long-term goals of the current proposal are to: 1.) Apply our established mechanistic enzymology approaches to an ever broader set of RNAs involved in regulating transcription, translation and splicing, seizing the opportunities arising from the continuing discoveries of new functional RNAs. 2.) Push the limits of our approaches to be able to probe increasingly complex biological contexts and mechanisms since unexpected discoveries – as we found – often await where individual RNA nanomachines interact. In pursuit of these goals, we will address the overarching hypothesis that dynamic RNA structures are a major determinant of the outcomes of gene expression, often in ways that have been overlooked by a field that historically was rooted in genetics, where genes regularly were drawn as rectangular boxes, and function commonly was thought of as dictated by sequence rather than structure. Such thinking is countered by, for example, the fact that nascent RNA structure has a significant impact on transcription in the form of regulatory riboswitches embedded near the 5' ends of bacterial mRNAs and of transcription terminator hairpins at the 3' end. Conversely, the time-ordered, 5'-to-3' directional RNA synthesis of transcription often yields kinetically trapped RNA folds distinct from the most thermodynamically stable structure of a refolded full-length transcript. Encapsulating the power of our pursuit, we recently combined single-molecule, biochemical and computational simulation approaches to show that transcriptional pausing at a site immediately downstream of a riboswitch requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced consensus pause sequence, and electrostatic and steric interactions with the exit channel of bacterial RNA polymerase. We posit that many more examples of such intimate structural and kinetic coupling between RNA folding and gene expression remain to be discovered, leading to the exquisite regulatory control and kinetic proofreading enabling all life processes. To reveal more such couplings, we will probe the dynamics of carefully purified transcriptional and translational riboswitch-containing, as well as spliceosomal, gene expression complexes using a tailored combination of single molecule fluorescence resonance energy transfer (smFRET), Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) based on super-resolved co-localization of RNA targets and fluorescent probes, cryo-electron microscopy – augmented by a proposed dye-based single molecule correlative light electron microscopy (smCLEM) – and, where appropriate, molecular dynamics simulations. We anticipate that these studies have the potential to transform our understanding of RNA structure-function relationships in general, and of how RNA structure is governing the function of cellular gene expression machines in particular.
标题: 在单分子水平上剖析基因表达的RNA纳米机器 摘要: 二十多年来,沃尔特实验室通过建立广泛的研究组合,为RNA领域做出了贡献。 解剖基因表达的纳米RNA机器的机制-从小病毒 核酶和细菌核糖开关的真核剪接体-通过单分子荧光 显微镜利用这一专业知识,目前提案的两个长期目标是:1。适用我们 建立了一个机制酶学方法,以更广泛的RNA参与调节 转录,翻译和拼接,抓住新的发现带来的机会, 功能性RNA。2.)的情况。推动我们的方法的极限,以便能够探测日益复杂的生物学 背景和机制,因为出乎意料的发现-正如我们所发现的-经常等待个体RNA 纳米机器相互作用。在追求这些目标的过程中,我们将讨论动态RNA 结构是基因表达结果的一个主要决定因素,通常以被忽视的方式 这个领域在历史上植根于遗传学,基因通常被画成矩形框, 功能通常被认为是由序列而不是结构决定的。这种想法被反驳, 例如,新生RNA结构对转录具有显著的影响,其形式是调节转录, 核糖开关嵌入在细菌mRNA的5'端附近和转录终止子发夹的3'端附近。 端相反,转录的时间顺序,5 '到3'方向的RNA合成通常在动力学上产生 捕获的RNA折叠不同于重折叠的全长转录物的最稳定的结构。 为了封装我们追求的力量,我们最近将单分子、生物化学和计算 模拟方法显示转录暂停在核糖开关下游的一个位点 需要新生RNA中的无配体假结,精确间隔的共有暂停序列,以及 与细菌RNA聚合酶的出口通道的静电和空间相互作用。我们会再做更多 RNA折叠和基因表达之间这种密切的结构和动力学耦合的例子仍然存在, 被发现,导致精致的监管控制和动力学校对,使所有生命过程。到 揭示更多这样的耦合,我们将探测仔细纯化的转录和翻译动力学 含有核糖开关以及剪接体的基因表达复合物, 单分子荧光共振能量转移(smFRET),RNA的单分子动力学分析 瞬时结构(SiM-KARTS)基于RNA靶标和荧光的超分辨共定位 探针,低温电子显微镜-由建议的基于染料的单分子相关光增强 电子显微镜(smCLEM)-和,在适当的情况下,分子动力学模拟。我们预计 这些研究有可能改变我们对RNA结构-功能关系的理解, 一般来说,以及RNA结构如何控制细胞基因表达机器的功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NILS G WALTER其他文献

NILS G WALTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NILS G WALTER', 18)}}的其他基金

The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
  • 批准号:
    9920170
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
  • 批准号:
    10390477
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Administrative Supplement for a Cytosurge FluidFM OMNIUM instrument: The RNA nanomachines of the gene expression machinery dissected at the single molecule level
Cytosurge FluidFM OMNIUM 仪器的行政补充:在单分子水平上解剖的基因表达机器的 RNA 纳米机器
  • 批准号:
    10797186
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Administrative Supplement for a Turnkey Fluorescence Microscope: Riboswitch mechanism unraveled at the single molecule level
交钥匙荧光显微镜的管理补充:在单分子水平上揭示核糖开关机制
  • 批准号:
    9894327
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Single-molecule counting of cancer biomarker miRNAs in human biofluids
人体生物体液中癌症生物标志物 miRNA 的单分子计数
  • 批准号:
    9233284
  • 财政年份:
    2017
  • 资助金额:
    $ 84.78万
  • 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
  • 批准号:
    9357619
  • 财政年份:
    2016
  • 资助金额:
    $ 84.78万
  • 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
  • 批准号:
    9079585
  • 财政年份:
    2016
  • 资助金额:
    $ 84.78万
  • 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
  • 批准号:
    8641463
  • 财政年份:
    2013
  • 资助金额:
    $ 84.78万
  • 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
  • 批准号:
    8785654
  • 财政年份:
    2013
  • 资助金额:
    $ 84.78万
  • 项目类别:
Spliceosome Mechanism Dissected at the Single Molecule Level
单分子水平剖析剪接体机制
  • 批准号:
    8415518
  • 财政年份:
    2012
  • 资助金额:
    $ 84.78万
  • 项目类别:

相似海外基金

Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
  • 批准号:
    10396678
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
  • 批准号:
    10361903
  • 财政年份:
    2021
  • 资助金额:
    $ 84.78万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10248476
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Shining a light on dense granules- biochemical, genetic and cell biological investigation of an essential but understudied compartment in malarial -
揭示致密颗粒——对疟疾中一个重要但尚未充分研究的隔室进行生化、遗传和细胞生物学研究——
  • 批准号:
    2243093
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Studentship
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10687856
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10005386
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10480082
  • 财政年份:
    2019
  • 资助金额:
    $ 84.78万
  • 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    2314361
  • 财政年份:
    2018
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    BB/S506837/1
  • 财政年份:
    2018
  • 资助金额:
    $ 84.78万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了