TSC2 AND ERK SIGNALING IN MTOR-DEPENDENT REGENERATION AND NEUROPATHIC PAIN
MTOR 依赖性再生和神经病理性疼痛中的 TSC2 和 ERK 信号传导
基本信息
- 批准号:8153102
- 负责人:
- 金额:$ 55.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute PainAffectAfferent NeuronsAxonBiochemicalBiological AssayDataDevelopmentDiscriminationEventFailureGeneticGoalsGrowthHealedHypersensitivityIn VitroInflammationInjuryKnock-outLeadLinkMAPK1 geneMAPK3 geneMaintenanceMediatingMitogen-Activated Protein KinasesModelingMolecularMusNatural regenerationNerve RegenerationNeurologicNeuronsNociceptionNociceptorsPainPathway interactionsPeripheralPeripheral NervesPeripheral nerve injuryPhysiologicalPopulationPresynaptic TerminalsProcessProtein BiosynthesisProtein IsoformsProteinsRecoveryRegulationRoleSignal PathwaySignal TransductionSystemTestingTranslationsTuberous sclerosis protein complexaxon growthaxon regenerationchronic neuropathic painchronic painhealinghuman TSC2 proteinin vivo regenerationinjuredinsightmTOR proteinnerve injuryneurological recoveryneuronal cell bodypainful neuropathyprogramsprotein expressionregenerativereinnervationrepairedresearch studyresponserole modelsensory stimulus
项目摘要
DESCRIPTION (provided by applicant): Acute pain in the wake of peripheral injury is an important, adaptive physiological response. Pain helps to reduce re-injury, thus hastening recovery. Acute pain normally resolves when the injury heals. However, in many cases involving damage to peripheral nerves, acute pain transforms into chronic pain, which persists long after wounds have fully healed, and can be severely debilitating. Injury to peripheral nerves elicits a regenerative response and may also lead to long-term sensitization that contributes to the development of chronic pain. Protein synthesis in sensory neurons is required for both axon regeneration and for the development and maintenance of sensitization and pain following injury. Our goal is to gain new insights into the signaling pathways controlling protein synthesis in response to nerve injury to develop strategies that stimulate neurological recovery without coincidently promoting the development of chronic pain. The evolutionarily conserved mammalian Target Of Rapamycin (mTOR), a master regulator of the protein synthesis machinery, and the extracellular signal-regulated kinase (ERK) pathway are linked to both axon regeneration and to the development of neuropathic pain. Activation of mTOR by conditional deletion of the negative regulator tuberin (TSC2) in sensory neurons is sufficient to sustain regenerative growth, but whether it affects the development of nerve injury-induced pain is not known. ERK1/2 signaling is a major upstream regulator or mTOR activity. Although sensitization and regenerative axon growth are two processes known to require protein synthesis, the role or ERK1/2 signaling in regulating protein synthesis in sensory neurons has not been explored. Furthermore, in the studies performed to date, no discrimination was made regarding which ERK isoform, ERK1 or ERK2, is involved in sensitization and regenerative axon growth. Our preliminary data reveal ERK2 as the critical isoform for nociceptor sensitization and as a negative regulator of axon regeneration. This provocative result challenges the current model of the role of ERK1/2 signaling in axon regeneration. We propose here to identify the overlapping molecular events that regulate axon regeneration and the conversion from acute to chronic pain after nerve injury. Specifically, we will determine if ERK signaling regulates protein synthesis in naive or injured primary sensory neurons. We will determine which ERK isoform affects the regenerative ability of sensory neurons and if this effect is dependent on ERK-mediated regulation of protein synthesis. Finally, we will evaluate the effect of TSC2, ERK1 and ERK2 deletion on the development and maintenance of nerve injury-induced pain. Together, these experiments will test whether TSC2 and ERK signaling converge to mTOR-dependent protein translation to regulate nerve regeneration and the development of injury-induced chronic pain.
PUBLIC HEALTH RELEVANCE: Recovery from peripheral nerve injury can be relatively good, but the damage can also lead to permanent neurological deficits including failure of reinnervation and the development of chronic pain. Here we propose to understand how the molecular mechanisms that help to promote axonal regeneration interact with the molecular pathways that result in the conversion from acute to chronic neuropathic pain after peripheral nerve injury. The ultimate goal is to identify approaches whereby one can selectively promote axon repair after injury without simultaneously promoting the development of chronic neuropathic pain.
描述(由申请人提供):外周损伤后的急性疼痛是一种重要的适应性生理反应。疼痛有助于减少再次受伤,从而加快恢复。急性疼痛通常会在伤口愈合后消失。然而,在许多涉及周围神经损伤的情况下,急性疼痛转化为慢性疼痛,在伤口完全愈合后持续很长时间,并且可能严重衰弱。周围神经损伤引起再生反应,也可能导致长期致敏,导致慢性疼痛的发展。感觉神经元中的蛋白质合成是轴突再生以及损伤后致敏和疼痛的发展和维持所必需的。我们的目标是获得对控制蛋白质合成的信号通路的新见解,以响应神经损伤,从而制定刺激神经恢复而不同时促进慢性疼痛发展的策略。 进化上保守的哺乳动物雷帕霉素靶蛋白(mTOR),蛋白质合成机制的主要调节因子,以及细胞外信号调节激酶(ERK)通路与轴突再生和神经性疼痛的发展有关。通过在感觉神经元中有条件地删除负调节因子tuberin(TSC 2)来激活mTOR足以维持再生生长,但它是否影响神经损伤诱导的疼痛的发展尚不清楚。ERK 1/2信号传导是mTOR活性的主要上游调节因子。虽然致敏和再生轴突生长是已知需要蛋白质合成的两个过程,但尚未探索ERK 1/2信号在调节感觉神经元中蛋白质合成中的作用。此外,在迄今为止进行的研究中,没有区分ERK亚型,ERK 1或ERK 2,参与致敏和再生轴突生长。我们的初步数据显示ERK 2作为伤害感受器致敏的关键同种型和作为轴突再生的负调节剂。这一挑衅性的结果挑战了目前ERK 1/2信号在轴突再生中的作用模型。 我们建议在这里确定重叠的分子事件,调节轴突再生和神经损伤后从急性疼痛到慢性疼痛的转换。具体来说,我们将确定是否ERK信号调节蛋白质合成幼稚或受伤的初级感觉神经元。我们将确定哪种ERK亚型影响感觉神经元的再生能力,以及这种作用是否依赖于ERK介导的蛋白质合成调节。最后,我们将评估TSC 2,ERK 1和ERK 2缺失对神经损伤引起的疼痛的发展和维持的影响。总之,这些实验将测试TSC 2和ERK信号传导是否收敛到mTOR依赖性蛋白质翻译,以调节神经再生和损伤诱导的慢性疼痛的发展。
公共卫生关系:周围神经损伤的恢复可能相对较好,但损伤也可能导致永久性神经功能缺损,包括神经再支配失败和慢性疼痛的发展。在这里,我们建议了解如何的分子机制,有助于促进轴突再生的相互作用的分子途径,导致从急性到慢性神经病理性疼痛周围神经损伤后的转换。最终的目标是确定方法,从而可以选择性地促进损伤后的轴突修复,而不同时促进慢性神经性疼痛的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Cavalli其他文献
Valeria Cavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Cavalli', 18)}}的其他基金
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10593846 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
2022 Cell Biology of the Neuron Gordon Research Conference and Gordon ReSeminar
2022年神经元细胞生物学戈登研究会议和戈登再研讨会
- 批准号:
9992131 - 财政年份:2021
- 资助金额:
$ 55.3万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10406343 - 财政年份:2021
- 资助金额:
$ 55.3万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10238542 - 财政年份:2021
- 资助金额:
$ 55.3万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10624855 - 财政年份:2021
- 资助金额:
$ 55.3万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
9913648 - 财政年份:2019
- 资助金额:
$ 55.3万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
10061654 - 财政年份:2019
- 资助金额:
$ 55.3万 - 项目类别:
ELUCIDATING THE ROLE OF NEURONAL MTOR SIGNALING IN SCHWANN CELL DEVELOPMENT
阐明神经元 MTOR 信号转导在施万细胞发育中的作用
- 批准号:
9387143 - 财政年份:2017
- 资助金额:
$ 55.3万 - 项目类别:
相似海外基金
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
- 批准号:
10778757 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
- 批准号:
10783106 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Predicting Pediatric Sickle Cell Disease Acute Pain Using Mathematical Models Based on mHealth Data
使用基于移动健康数据的数学模型预测儿童镰状细胞病急性疼痛
- 批准号:
10599401 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
Non-Contingent Acute Pain Stress Drives Analgesic Protection in Rats.
非偶然急性疼痛应激驱动大鼠镇痛保护。
- 批准号:
575854-2022 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Prefrontal Cortex Hemodynamic Responses to Mindfulness Meditation and Acute Pain
前额皮质血流动力学对正念冥想和急性疼痛的反应
- 批准号:
467076 - 财政年份:2021
- 资助金额:
$ 55.3万 - 项目类别:
Studentship Programs
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
- 批准号:
9979265 - 财政年份:2020
- 资助金额:
$ 55.3万 - 项目类别:
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
- 批准号:
10218273 - 财政年份:2020
- 资助金额:
$ 55.3万 - 项目类别: