Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
基本信息
- 批准号:10406343
- 负责人:
- 金额:$ 89.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-17 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAfferent NeuronsAutomobile DrivingAxonBiological ModelsCellsChromatinEnvironmentEpigenetic ProcessEsthesiaFailureFutureGenesGenetic TranscriptionGoalsHumanIndividualLeadMolecular ConformationMolecular ProfilingMusNatural regenerationNervous System TraumaNeuraxisNeurobiologyNeurogliaNeuronsOptic NerveOptic Nerve InjuriesPathway interactionsPeripheralPhysiologyProcessRecoveryRegenerative capacityRegulationResearchSensory GangliaSiteSpinal cord injuryVisionaxon growthaxon injuryaxon regenerationbasecell typecentral nervous system injurydisabilityepigenomicsimprovedinjuredinnovationmouse modelnerve damagenerve repairneuronal cell bodynovelnovel strategiesprogramsregenerativerepairedsuccesstool
项目摘要
ABSTRACT
Permanent disabilities following central nervous system (CNS) injuries result from the failure of injured
axons to re-build functional connections. There are currently no therapies to restore mobility and sensation
following spinal cord injury or vision after optic nerve damage. The poor intrinsic regenerative capacity of
mature CNS neurons is a major contributor to the regeneration failure and remains a major problem in
neurobiology. In contrast, peripheral sensory neurons successfully switch to a regenerative state after axon
injury. The long-term goal of my research program is to understand the multicellular mechanisms by which
injured sensory neurons activate a pro-regenerative program and identify potential targets for future treatment
of CNS injuries.
Activation of an axon growth program relies in part on the expression of regeneration-associated genes.
Because individual gene based approaches have yielded limited success in axon regeneration, we are
focusing on epigenomic regulations, which affect globally, yet specifically a combination of multiple genes. Our
goal is to uncover how the epigenetic landscape is re-organized in the context of axon injury to enable axon
repair. These studies will incorporate cell-type specific epigenomic analyses to study the transcriptional and
chromatin conformation changes elicited by peripheral and central axon injury. Axon regeneration is not cell
autonomous and is influenced by the environment at the level of the axon injury site and at the level of the cell
soma. We have recently discovered that satellite glial cells, the main type of glial cells in sensory ganglia
respond to axon injury and contribute to the repair process. We propose to use powerful combinations of tools
to pursue an innovative line of research aimed at dissecting the multicellular mechanisms orchestrating axon
regeneration and build upon these findings to improve regeneration in CNS models. To achieve this goal, we
will determine the intrinsic neuronal mechanisms controlling axon regeneration, focusing on epigenomics
studies. We will elucidate the contribution of the microenvironment surrounding neuronal soma to the axon
regeneration process, including satellite glial cells and other non-neuronal cells. To determine if findings made
in the mouse model system are predictive of human physiology, we will determine the molecular profile of
human cells surrounding sensory neurons. Finally we propose to manipulate novel pathways we discover to
improve regeneration in two CNS models, spinal cord injury and optic nerve injury. This proposal will use
powerful combinations of tools to pursue an innovative line of research aimed at dissecting the multicellular
mechanisms orchestrating axon regeneration and build upon these findings to improve regeneration in CNS
models.
摘要
中枢神经系统(CNS)损伤后的永久性残疾是由于受伤者的失败造成的。
轴突来重建功能连接目前还没有恢复活动性和感觉的疗法
脊髓损伤或视神经损伤后的视力。差的内在再生能力,
成熟的中枢神经系统神经元是再生失败的主要原因,
神经生物学相比之下,外周感觉神经元在轴突再生后成功地切换到再生状态。
损伤我的研究计划的长期目标是了解多细胞机制,
受伤的感觉神经元激活了一个促再生程序,并确定了未来治疗的潜在目标
中枢神经系统损伤
轴突生长程序的激活部分依赖于再生相关基因的表达。
由于基于单个基因的方法在轴突再生方面取得了有限的成功,
专注于表观基因组调控,影响全球,但具体来说是多个基因的组合。我们
目标是揭示在轴突损伤的背景下表观遗传景观如何重组,以使轴突能够
修复.这些研究将结合细胞类型特异性表观基因组分析,以研究转录和
外周和中央轴突损伤引起的染色质构象变化。轴突再生不是细胞
并且在轴突损伤部位水平和细胞水平受环境影响
索马。我们最近发现,卫星神经胶质细胞,感觉神经节中的主要类型的神经胶质细胞,
对轴突损伤做出反应并促进修复过程。我们建议使用强大的工具组合
进行一项创新性的研究,旨在解剖协调轴突的多细胞机制,
再生,并建立在这些发现,以改善CNS模型的再生。为了实现这一目标,我们
将确定控制轴突再生的内在神经元机制,重点是表观基因组学
问题研究我们将阐明神经元索马周围的微环境对轴突的贡献
再生过程中,包括卫星神经胶质细胞和其他非神经元细胞。以确定是否有调查结果
在小鼠模型系统中预测人类生理学,我们将确定
感觉神经元周围的人类细胞。最后,我们建议操纵我们发现的新途径,
在两种中枢神经系统模型,脊髓损伤和视神经损伤中改善再生。该提案将使用
强大的工具组合,以追求创新的研究路线,旨在解剖多细胞
协调轴突再生的机制,并建立在这些发现的基础上,以改善中枢神经系统的再生
模型
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Cavalli其他文献
Valeria Cavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Cavalli', 18)}}的其他基金
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 89.57万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 89.57万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10593846 - 财政年份:2022
- 资助金额:
$ 89.57万 - 项目类别:
2022 Cell Biology of the Neuron Gordon Research Conference and Gordon ReSeminar
2022年神经元细胞生物学戈登研究会议和戈登再研讨会
- 批准号:
9992131 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10238542 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10624855 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
9913648 - 财政年份:2019
- 资助金额:
$ 89.57万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
10061654 - 财政年份:2019
- 资助金额:
$ 89.57万 - 项目类别:
ELUCIDATING THE ROLE OF NEURONAL MTOR SIGNALING IN SCHWANN CELL DEVELOPMENT
阐明神经元 MTOR 信号转导在施万细胞发育中的作用
- 批准号:
9387143 - 财政年份:2017
- 资助金额:
$ 89.57万 - 项目类别:
MECHANISMS OF CHROMATIN REMODELING PROMOTING AXON REGENERATION
染色质重塑促进轴突再生的机制
- 批准号:
9328185 - 财政年份:2016
- 资助金额:
$ 89.57万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 89.57万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 89.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 89.57万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 89.57万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 89.57万 - 项目类别:
Discovery Grants Program - Individual