CRCNS: Active Sensing and Odor Processing in the Olfactory Bulb
CRCNS:嗅球中的主动感知和气味处理
基本信息
- 批准号:8136222
- 负责人:
- 金额:$ 26.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAnimalsBehaviorCellsCodeComplexComputer SimulationDevelopmentDevicesEnvironmentEsthesiaFrequenciesGenerationsIndividualJointsLeadLimb ProsthesisModalityModelingMovementOdorsOutputPatternPerceptionPopulationPrincipal InvestigatorProcessProsthesisResource SharingRespirationRodentSamplingSensorySensory ProcessShapesStagingStimulusStructureSynapsesSystemTestingTimeWorkawakebehavior measurementdesignimprovedinformation processinginsightmillisecondneural patterningolfactory bulbresearch studyrespiratorysensorsensory systemspatiotemporal
项目摘要
DESCRIPTION (provided by applicant): Sensation is an active process involving dynamic interactions of the animal with its environment, which leads to dynamic patterns of neural activity in sensory neurons and in the central processing stages that ultimately underlie perception. The proposed project will investigate sensory system function in the awake animal, using the olfactory system to understand the relationship between the dynamics of stimulus sampling, the temporal structure of sensory inputs to the olfactory system, and how these two factors shape processing in the olfactory bulb - the first stage of information processing in the mammalian olfactory system. Temporally dynamic activity patterns are a prominent feature of many different levels of olfactory processing, and dynamic activity at both slow (100 - 500 msec) and fast (10 - 50 ms) timescales is central to many models of odor coding. Much of the dynamics of odorant-evoked activity - at all of these levels - is structured around the respiratory cycle, which controls the access of odorant to the sensory neurons themselves. However, it remains unclear how the temporal structure of sensory input shapes odor representations and information processing. In addition, in the behaving animal respiration itself is highly dynamic, with animals actively changing the frequency, amplitude, and shape of individual sniffs during odor sampling (i.e., sniffing). Very few studies to date have examined the consequences of these changes in sampling behavior - and in the sniff-driven sensory input - for higher-order olfactory processing. At the same time, recent studies have pointed to the importance of circuitry in the glomerular layer of the olfactory bulb in shaping bulb output via mitral cells. These newly-described circuits have yet to be incorporated into a biophysically-realistic, computational model of olfactory bulb function. This project will use a combination of experimental and computational approaches to address two central questions:
1. How does the glomerular circuitry transform realistic patterns of sensory input into patterns of mitral cell output?
2. What are the consequences of the olfactory bulb transformation for the representation of odorants by mitral cell populations?
Intellectual Merit: The project is a joint experimental and computational effort which uses spatiotemporal patterns of sensory neuron activity recorded from awake, behaving rodents as inputs to computational models of the olfactory bulb network. The project will also use electrophysiological and behavioral measures to test model predictions. This approach is unique and significant in that it uses - for the first time - natural sensory inputs to a model of olfactory bulb function, and also because it incorporates - for the first time - a realistic model of the circuitry around the olfactory bulb glomerulus, many features of which have only recently been described. The experiments are designed to provide a picture of how odor information is transformed at the first stage of synaptic processing and how this transformation is actively shaped by the animal's own sampling behavior.
Broader Impacts: The proposed work should lead to important insights into how sensation can be actively modulated by sensory acquisition behavior. A potentially important biomedical impact of this work is the development of improved prosthetic devices - for example, artificial limbs which use sensor-driven proprioceptive information to help control movement. Another potential impact is the improved design of sensor devices for detecting analytes in a complex environment. The general concept of using naturalistic sensory information as inputs to model circuits is an idea that could also lead to important breakthroughs in understanding sensory processing in other modalities. Generation of the first circuit model of the recently-described glomerular network in the olfactory bulb will be an important shared resource for others in the field who wish to characterize computations at the first few synapses in the olfactory system.
描述(申请人提供):感觉是一个活跃的过程,涉及动物与其环境的动态相互作用,导致感觉神经元和最终构成感知的中央处理阶段的神经活动的动态模式。这个拟议的项目将研究清醒动物的感觉系统功能,使用嗅觉系统来了解刺激采样的动力学、感觉输入到嗅觉系统的时间结构之间的关系,以及这两个因素如何塑造嗅球的处理-哺乳动物嗅觉系统信息处理的第一阶段。时间上的动态活动模式是许多不同水平的嗅觉处理的显著特征,而在慢(100-500毫秒)和快(10-50毫秒)时间尺度上的动态活动是许多气味编码模型的核心。在所有这些水平上,气味诱发活动的大部分动态都是围绕呼吸周期构建的,呼吸周期控制着气味进入感觉神经元本身。然而,尚不清楚感觉输入的时间结构如何塑造气味表征和信息处理。此外,在有行为的动物身上,呼吸本身是高度动态的,动物在气味采样(即嗅觉)过程中主动改变个体嗅觉的频率、幅度和形状。到目前为止,很少有研究研究这些采样行为的变化--以及嗅觉驱动的感觉输入--对高阶嗅觉处理的影响。与此同时,最近的研究指出,嗅球肾小球层的电路在通过二尖瓣细胞塑造球输出方面具有重要作用。这些新描述的电路还没有被整合到嗅球功能的生物物理现实的计算模型中。该项目将使用实验和计算相结合的方法来解决两个核心问题:
1.肾小球回路如何将现实的感觉输入模式转换为二尖瓣细胞输出模式?
2.嗅球改变对二尖瓣细胞群代表气味有什么影响?
智力价值:该项目是一项联合的实验和计算工作,使用清醒的、表现为啮齿动物的感觉神经元活动的时空模式作为嗅球网络计算模型的输入。该项目还将使用电生理和行为测量来测试模型预测。这种方法是独特和重要的,因为它第一次使用了嗅球功能模型的自然感觉输入,也因为它第一次结合了嗅球小球周围电路的真实模型,其中的许多特征直到最近才被描述。这些实验旨在提供一幅图,展示气味信息在突触处理的第一阶段是如何转化的,以及这种转化是如何被动物自己的采样行为主动塑造的。
更广泛的影响:拟议的工作应该导致对感觉如何被感觉获得行为主动调节的重要见解。这项工作的一个潜在的重要生物医学影响是改进的假肢设备的开发-例如,使用传感器驱动的本体感觉信息来帮助控制运动的假肢。另一个潜在的影响是改进了传感器设备的设计,以便在复杂的环境中检测分析物。将自然主义的感觉信息作为模型电路的输入的一般概念,也可能导致在理解其他形式的感觉处理方面的重要突破。最近在嗅球中描述的肾小球网络的第一个电路模型的产生将是该领域中希望描述嗅觉系统中最初几个突触的计算的其他人的重要共享资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DALE M WACHOWIAK其他文献
DALE M WACHOWIAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DALE M WACHOWIAK', 18)}}的其他基金
Dynamics of odor coding and processing by neural circuits in the olfactory bulb
嗅球神经回路的气味编码和处理动力学
- 批准号:
10458075 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Dynamics of odor coding and processing by neural circuits in the olfactory bulb
嗅球神经回路的气味编码和处理动力学
- 批准号:
10276165 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Dynamics of odor coding and processing by neural circuits in the olfactory bulb
嗅球神经回路的气味编码和处理动力学
- 批准号:
10664878 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Using functionally-defined glomeruli to probe circuit function in the mammalian olfactory bulb
使用功能定义的肾小球探测哺乳动物嗅球的电路功能
- 批准号:
10468288 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Using functionally-defined glomeruli to probe circuit function in the mammalian olfactory bulb
使用功能定义的肾小球探测哺乳动物嗅球的电路功能
- 批准号:
9668660 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Using functionally-defined glomeruli to probe circuit function in the mammalian olfactory bulb
使用功能定义的肾小球探测哺乳动物嗅球的电路功能
- 批准号:
10241984 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Using functionally-defined glomeruli to probe circuit function in the mammalian olfactory bulb
使用功能定义的肾小球探测哺乳动物嗅球的电路功能
- 批准号:
9791032 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Using functionally-defined glomeruli to probe circuit function in the mammalian olfactory bulb
使用功能定义的肾小球探测哺乳动物嗅球的电路功能
- 批准号:
10001041 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Target-Defined Parallel Pathways in the Olfactory System
嗅觉系统中目标定义的平行通路
- 批准号:
8793786 - 财政年份:2013
- 资助金额:
$ 26.97万 - 项目类别:
Target-Defined Parallel Pathways in the Olfactory System
嗅觉系统中目标定义的平行通路
- 批准号:
8479072 - 财政年份:2013
- 资助金额:
$ 26.97万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 26.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 26.97万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 26.97万 - 项目类别:
Discovery Grants Program - Individual