Modern Public Health data storage for High Volume using the PowerVault MD3000
使用 PowerVault MD3000 进行大容量现代公共卫生数据存储
基本信息
- 批准号:8052149
- 负责人:
- 金额:$ 47.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBiological AssayBiologyBiometryCellsCommunicable DiseasesComplexComputational BiologyComputersCoupledDataData AnalysesData SetData Storage and RetrievalDecentralizationDisciplineDiseaseEnvironmentEnvironmental HealthEpidemiologyEtiologyFundingGenerationsGenesGeneticGenomeGenomicsGoalsHealthImmune responseIndividualInstitutionInvestigationModelingPerformancePhysical environmentPoliciesPopulationProcessPublic HealthPublic Health SchoolsResearchResourcesRoleScientistSocial EnvironmentSystemTechnologyUnited States National Institutes of Healthcohortcollaboratorycomputer infrastructurecostdata acquisitiondata managementdata sharingflexibilityimprovedmeetingsnutritionpathogenpublic health researchsocial
项目摘要
DESCRIPTION (provided by applicant): Public health research increasingly incorporates high-throughput biomedical data, opening up new areas for data-driven research. Recently, scientists have begun to realize the potential for modern biology to move 'beyond the genome' to look at the genome's complex interactions with the social and physical environments, focusing on disease etiology and the role of all cellular aspects in promoting health. In order to realize this potential our scientists have been moving from individual ad hoc studies to collaborative projects intended to scale across a broad range of disciplines. In the last five years, dramatic increases in the scale of environmental and health data acquisition, sequencing and assay technologies have coupled with increased decentralization of data generation resulting in a growing data management and analysis bottleneck. Our long term goal at the School of Public Health is to provide a seamless collaboratory environment in which it is possible to exploit the broad range of our expertise across shared datasets spanning investigations from the cell to the population. In order to achieve this aim we need to radically improve our existing shared computer data storage from its concentration on low volume, high stability, high cost, high performance with a user pays all costs model, to a tiered data storage model, subsidized by the institution, that is flexible enough to meet a broad range of requirements. We wish to: (a) co-locate genomic, genetic, environmental, epidemiological, social, and statistical data in a shared data environment; (b) apply consistent policies, access, user support, computing environments, workflows and user interfaces; ( c) provide a scalable data storage resource at low cost to accommodate the rapid increase in sizes of genomic and cohort data. The effective management, storage and processing of this complex experimental data is therefore crucial and requires computational infrastructure capable of providing consistent storage and organization of primary data and derived results. With scalable, shared data storage, we will directly impact studies in complex diseases, host response to infectious diseases, pathogen diversity, nutrition, and studies of genes to environment. The Harvard School of Public Health (HSPH) is requesting funding for the deployment of a centralized, tiered high-performance data storage system to support our NIH-funded research in computational biology, genomics and biostatistics as applied to public health.
公共卫生研究越来越多地采用高通量生物医学数据,为数据驱动的研究开辟了新的领域。最近,科学家们已经开始意识到现代生物学的潜力,即“超越基因组”,研究基因组与社会和物理环境的复杂相互作用,专注于疾病病因学和所有细胞方面在促进健康中的作用。为了实现这一潜力,我们的科学家们一直在从单独的临时研究转向旨在跨越广泛学科的合作项目。在过去五年中,环境和健康数据采集、测序和分析技术的规模急剧增加,加上数据生成的分散化程度增加,导致数据管理和分析瓶颈日益严重。我们在公共卫生学院的长期目标是提供一个无缝的合作实验室环境,在这个环境中,我们可以利用我们在共享数据集上的广泛专业知识,这些数据集涵盖了从细胞到人群的调查。为了实现这一目标,我们需要从根本上改善我们现有的共享计算机数据存储,从其集中在低容量,高稳定性,高成本,高性能与用户支付所有费用的模式,分层数据存储模式,由机构补贴,这是足够灵活,以满足广泛的要求。我们希望:(a)在共享数据环境中共同定位基因组、遗传、环境、流行病学、社会和统计数据;(B)应用一致的策略、访问、用户支持、计算环境、工作流程和用户界面;(c)以低成本提供可扩展的数据存储资源,以适应基因组和群组数据大小的快速增加。因此,对这种复杂的实验数据进行有效的管理、存储和处理是至关重要的,并且需要能够提供对原始数据和衍生结果的一致存储和组织的计算基础设施。通过可扩展的共享数据存储,我们将直接影响复杂疾病的研究,宿主对传染病的反应,病原体多样性,营养以及基因对环境的研究。哈佛公共卫生学院(HSPH)正在申请资金,用于部署一个集中式、分层的高性能数据存储系统,以支持我们由NIH资助的、应用于公共卫生的计算生物学、基因组学和生物统计学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Winston Alexander Hide其他文献
Winston Alexander Hide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Winston Alexander Hide', 18)}}的其他基金
Non-coding RNAs in resilience to Alzheimer’s Disease
非编码 RNA 有助于抵抗阿尔茨海默病
- 批准号:
10666167 - 财政年份:2023
- 资助金额:
$ 47.31万 - 项目类别:
The Alzheimer's Disease Resiliome: Pathway Analysis and Drug Discovery.
阿尔茨海默病弹性组:通路分析和药物发现。
- 批准号:
10374771 - 财政年份:2019
- 资助金额:
$ 47.31万 - 项目类别:
The Alzheimer's Disease Resiliome: Pathway Analysis and Drug Discovery.
阿尔茨海默病弹性组:通路分析和药物发现。
- 批准号:
10649411 - 财政年份:2019
- 资助金额:
$ 47.31万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 47.31万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 47.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 47.31万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 47.31万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




