Mesenchymal Stromal Cell Conditioning by Carbon Monoxide
一氧化碳调理间充质基质细胞
基本信息
- 批准号:8225579
- 负责人:
- 金额:$ 49.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Lung InjuryAnimal ModelAnimalsAnti-Inflammatory AgentsAnti-inflammatoryApoptosisAutomobile DrivingBacteriaBiologicalBiological AssayBone MarrowCarbon MonoxideCell CommunicationCell TherapyCell surfaceCellsCessation of lifeCoculture TechniquesComplexConditioned Culture MediaDeath RateDiagnosisDiseaseEarly treatmentEffector CellEventExposure toFailureFibroblastsFunctional disorderGasesGoalsHarvestHematopoieticHemeHome environmentHomeostasisHomingHourHumanHypotensionHypoxiaImmuneImmune Cell ActivationImmune responseImmune systemInfectionInflammationInflammatoryInflammatory ResponseInjuryInvadedKnockout MiceLaboratoriesLeadLigationLungLymphocyteMediator of activation proteinMedicalMesenchymalMolecularMusOrganOrgan SurvivalOrganismOutcomeOxygenasesPatientsPhagocytesPhagocytosisProcessPropertyPulmonary CirculationPuncture procedureRefractoryResolutionRespiratory FailureRoleSepsisSeptic ShockSeveritiesSiteStagingStromal CellsTherapeuticTimeTransgenic MiceWound Healingantimicrobialbaseconditioningheme oxygenase-1improvedimproved functioningin vivoinnovationinsightlung injurymacrophagemicrobialmicroorganismmonocyteneutrophilnovelnovel strategiesnovel therapeuticsoverexpressionparacrinepathogenpre-clinicalpreventresponse
项目摘要
PROJECT SUMMARY (See instmctions):
Sepsis is a disease process representing the systemic response to severe infection. The infectious insult activates immune cells of the host, including neutrophils, monocytes/macrophages, and lymphocytes. Early activation of immune cells triggers a pro-inflammatory response that contributes to eradication of the invading microorganism(s). If the pathogens are not eradicated, sepsis may progress to severe sepsis (sepsis plus organ dysfunction, such as lung injury and respiratory failure) and septic shock (severe sepsis
plus refractory hypotension and circulatory failure), which frequently leads to death. Once the invading microorganism(s) are eradicated, then resolution of the immune response is critical, as continued systemic inflammation will lead to organ injury. Unfortunately, this early pro-inflammatory response may also be followed by a later state of immunoparalysis, due in part to apoptosis of immune effector cells. The cascade of biologic events that occur during sepsis is complex, and therapeutic strategies need to be tailored depending upon the stage of sepsis at the time of diagnosis. Multipotent mesenchymal stromal cells (MSCs) are considered to be a promising platform for cell-based therapy. MSCs are known to have immunomodulatory
properties, and recently it has been suggested that MSCs are beneficial during the early proinflammatory stage of cecal ligation and puncture in mice. We hypothesize that MSCs, when administered to mice after the onset of polymicrobial or single organism sepsis, will adapt to the specific stage of sepsis and lead to an improved outcome. Prior studies in our laboratory demonstrated that heme oxygenase (H0)-1-derived carbon monoxide (CO), a known anti-inflammatory molecule, also has anti-microbial properties during sepsis. Thus, we also hypothesize that conditioning MSCs with CO ex vivo will improve their function In vivo, and increase the beneficial effects of MSCs after the onset of sepsis in mice. Gaining insight into the mechanisms responsible for this enhanced response of MSCs conditioned with CO will allow us to further understand MSCs as a cell-based therapy, and to develop novel therapeutic strategies for this devastating disease process. MSCs ¿ CO conditioning will also be studied in mice with a "humanized" immune system.
Finally we will advance the understanding of the human immune response to sepsis by assessing phagocytic function of neutrophils and monocytes harvested from patients with sepsis or sepsis plus acute lung injury, compared with cells from control patients. We will determine whether the administration of MSCs ¿ CO ex vivo can improve phagocyte function. These functional assays will be correlated with patient outcome.
项目摘要(请参阅Instmctions):
败血症是代表对严重感染的全身反应的疾病过程。感染性损伤激活宿主的免疫细胞,包括中性粒细胞,单核细胞/巨噬细胞和淋巴细胞。免疫细胞的早期激活触发了促炎反应,这有助于入侵微生物的辐射。如果未放射病原体,败血症可能会发展为严重的败血症(败血症加器官功能障碍,例如肺损伤和呼吸衰竭)和败血性休克(严重的败血症
加上难治性低血压和电路失败),这经常导致死亡。一旦入侵的微生物放射放射性,则免疫增强响应的分辨率至关重要,因为持续的全身感染将导致器官损伤。不幸的是,这种早期促炎反应也可能是后来的免疫分析状态,部分原因是免疫效应细胞的凋亡。败血症期间发生的一系列生物事件是复杂的,并且需要根据诊断时败血症的阶段来量身定制治疗策略。多态性间充质基质细胞(MSC)被认为是基于细胞治疗的有前途的平台。已知MSC具有免疫调节
特性,最近有人提出,在小鼠的盲肠结扎和穿刺的早期促炎阶段,MSC是有益的。我们假设MSC在多肌醇或单一生物体败血症发作后将MSC施用时,将适应败血症的特定阶段,并导致改善的结果。在我们的实验室中的先前研究表明,已知的抗炎分子(H0)-1衍生的一氧化碳(CO)(CO)在败血症期间也具有抗微生物特性。因此,我们还假设通过CO EX VIVO的调理MSC将改善其在体内的功能,并增加败血症开始后MSC的有益作用。洞悉负责以CO为条件的MSC这一增强反应的机制将使我们能够进一步将MSC理解为基于细胞的治疗,并为这种毁灭性的疾病过程制定新的治疗策略。 MSCS�CO调节也将在具有“人性化”免疫系统的小鼠中研究。
最后,与对照患者的细胞相比,我们将通过评估从脓毒症或败血症或脓毒症加急性肺损伤的患者收获的中性粒细胞和单核细胞的嗜中性粒细胞和单核细胞的静脉功能来提高对败血症的理解。我们将确定MSCS的施用是否可以改善吞噬细胞功能。这些功能测定将与患者结局相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A PERRELLA其他文献
Mark A PERRELLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A PERRELLA', 18)}}的其他基金
Mesenchymal Stromal Cells, Autophagy, and the Host Response to Systemic Bacterial Infection
间充质基质细胞、自噬和宿主对全身细菌感染的反应
- 批准号:
10379357 - 财政年份:2020
- 资助金额:
$ 49.48万 - 项目类别:
Mesenchymal Stromal Cells, Autophagy, and the Host Response to Systemic Bacterial Infection
间充质基质细胞、自噬和宿主对全身细菌感染的反应
- 批准号:
10557214 - 财政年份:2020
- 资助金额:
$ 49.48万 - 项目类别:
Mechanotransduction and YAP/TAZ Signaling in Pulmonary Arterial Hypertension
肺动脉高压中的机械转导和 YAP/TAZ 信号传导
- 批准号:
10078970 - 财政年份:2018
- 资助金额:
$ 49.48万 - 项目类别:
Cardiomyocyte Differentiation Regulates Cardiac Function
心肌细胞分化调节心脏功能
- 批准号:
8386962 - 财政年份:2010
- 资助金额:
$ 49.48万 - 项目类别:
Cardiomyocyte Differentiation Regulates Cardiac Function
心肌细胞分化调节心脏功能
- 批准号:
8045121 - 财政年份:2010
- 资助金额:
$ 49.48万 - 项目类别:
Cardiomyocyte Differentiation Regulates Cardiac Function
心肌细胞分化调节心脏功能
- 批准号:
8584311 - 财政年份:2010
- 资助金额:
$ 49.48万 - 项目类别:
Cardiomyocyte Differentiation Regulates Cardiac Function
心肌细胞分化调节心脏功能
- 批准号:
8204408 - 财政年份:2010
- 资助金额:
$ 49.48万 - 项目类别:
DNA Minor Groove-binding Drugs and Food-borne Pathogens
DNA 小沟结合药物和食源性病原体
- 批准号:
7324797 - 财政年份:2004
- 资助金额:
$ 49.48万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
New mechanism-based TREM-1 therapy for acute respiratory distress syndrome
基于新机制的 TREM-1 疗法治疗急性呼吸窘迫综合征
- 批准号:
10678788 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Targeted conditioning to maximize prenatal HSC engraftment for SCD
针对性调节以最大限度地提高 SCD 的产前 HSC 植入
- 批准号:
10654382 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别:
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10603460 - 财政年份:2023
- 资助金额:
$ 49.48万 - 项目类别: