THE ROLE OF COMPLEX 1 IN MITOCHONDRIAL DYSFUNCTION & FREE RADICAL PROD IN TYPE 1
复合物 1 在线粒体功能障碍中的作用
基本信息
- 批准号:8167975
- 负责人:
- 金额:$ 7.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBirthCardiacCitric Acid CycleComplexComputer Retrieval of Information on Scientific Projects DatabaseDefectDiabetes MellitusDiabetic mouseDiseaseDisease ProgressionElectron TransportEventFatty AcidsFree RadicalsFundingFutureGlucoseGoalsGrantHeartHeart DiseasesHeart MitochondriaHeart failureImpairmentInstitutionInsulin-Dependent Diabetes MellitusInterventionMetabolic PathwayMitochondriaMolecularMorbidity - disease rateMusOrganellesOxidative StressProcessProductionPyruvatePyruvatesResearchResearch PersonnelResourcesRoleSourceStagingTimeTissuesUnited States National Institutes of Healthantioxidant therapybasediabeticdiabetic cardiomyopathyimprovedinsightmitochondrial dysfunctionmortalitypreventtherapeutic target
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The Role of Complex I in Mitochondrial Dysfunction and Free Radical Production in Type 1 Diabetes.
A leading cause of morbidity and mortality induced by diabetes is heart failure. Diabetes leads to a specific form of heart disease, termed diabetic cardiomyopathy, the causes of which are not completely understood. However, it is known that there are deficiencies in the processes that produce energy for cardiac tissue. These processes occur in distinct subcellular organelles called mitochondria. Loss of mitochondrial function leads to an increase in free radical production, which in turn generates an oxidative stres. The underlying mechanisms of mitochondrial dysfunction, and the role of free radicals in perpetuating diabetic cardiomyopathy are not well understood. The goal of the present project is to assess how mitochondrial function changes as a progression of type 1 diabetes using a genetically modified mouse that develops the disease at birth.
Heart mitochondria from two-month-old mice (control and diabetic) are currently being evaluated. While this project is in early stages, the results are quite clear. Specifically, we have found that diabetic mice show no overt decrease in electron transport chain activity (which underlies the fundamental mechanism by which mitochondria produce energy). Furthermore, there is not a diabetes-induced increase in mitochondrial free radical production at this time point. Nevertheless, we have found clear differences in diabetic mitochondria as compared to controls. Specifically, mitochondria from diabetic mice have staggering limitations in the fuel sources they are able to utilize for energy production. They will only produce energy effectively using fatty acids, and have severe deficits in the ability to utilize pyruvate (an end product of glucose breakdown). Provocatively, the diabetic mitochondria also have severe deficits in the ability to produce energy using Krebs cycle intermediates (a central metabolic pathway carried out in the mitochondria). The significance of these findings will become clearer as the study progresses, but indicate significant impairments from an early stage.
We anticipate future results of this study to provide important information regarding the molecular basis of the disease progression of type 1 diabetes. Specifically, this study will define the molecular aspects of mitochondrial energy production that are affected by the disease. In turn, this information will be used to determine the cause of increased free radical production and oxidative stress. This will address very fundamental questions. Specifically, how does mitochondrial dysfunction contribute to diabetic cardiomyopathy? Is mitochondrial dysfunction in the heart an early event in the progression of the disease? And, importantly, how can these defects be prevented? Results of this study will provide information about possible therapeutic targets to minimize the onset of diabetic cardiomyopathy and provide insight into improving pharmacological intervention using antioxidant therapy.
该子项目是利用
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
复合物I在1型糖尿病线粒体功能障碍和自由基产生中的作用。
糖尿病引起的发病率和死亡率的主要原因是心力衰竭。 糖尿病导致一种特殊形式的心脏病,称为糖尿病性心肌病,其原因尚不完全清楚。 然而,已知在为心脏组织产生能量的过程中存在缺陷。 这些过程发生在称为线粒体的不同亚细胞细胞器中。 线粒体功能的丧失导致自由基产生增加,这反过来又产生氧化应激。线粒体功能障碍的潜在机制,以及自由基在糖尿病心肌病中的作用尚不清楚。 本项目的目标是评估线粒体功能如何随着1型糖尿病的进展而变化,使用在出生时发展该疾病的转基因小鼠。
目前正在评估两个月大的小鼠(对照组和糖尿病组)的心脏线粒体。 虽然这个项目还处于早期阶段,但结果已经非常明显。 具体地说,我们发现糖尿病小鼠的电子传递链活性没有明显降低(这是线粒体产生能量的基本机制的基础)。 此外,在这个时间点,糖尿病没有引起线粒体自由基产生的增加。 然而,我们发现糖尿病线粒体与对照组相比存在明显差异。 具体来说,来自糖尿病小鼠的线粒体在它们能够用于能量生产的燃料来源方面具有惊人的限制。 它们只能有效地利用脂肪酸产生能量,并且在利用丙酮酸(葡萄糖分解的最终产物)的能力方面存在严重缺陷。 具有挑衅性的是,糖尿病线粒体在使用克雷布斯循环中间体(在线粒体中进行的中心代谢途径)产生能量的能力方面也具有严重缺陷。 随着研究的进展,这些发现的意义将变得更加清晰,但表明早期阶段存在显著的损害。
我们预计这项研究的未来结果将提供有关1型糖尿病疾病进展的分子基础的重要信息。 具体来说,这项研究将确定线粒体能量产生的分子方面受到疾病的影响。 反过来,这些信息将用于确定增加的自由基产生和氧化应激的原因。这将解决非常根本的问题。 具体来说,线粒体功能障碍如何导致糖尿病心肌病? 心脏线粒体功能障碍是疾病进展的早期事件吗? 更重要的是,如何预防这些缺陷? 本研究的结果将提供有关可能的治疗靶点的信息,以尽量减少糖尿病心肌病的发作,并提供洞察力,以改善药物干预使用抗氧化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth M Humphries其他文献
Kenneth M Humphries的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth M Humphries', 18)}}的其他基金
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10521773 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Investigating the role of SIRT3 in metabolic flexibility and proteostasis in the aging heart
研究 SIRT3 在衰老心脏代谢灵活性和蛋白质稳态中的作用
- 批准号:
10625412 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10676962 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Investigating the role of SIRT3 in metabolic flexibility and proteostasis in the aging heart
研究 SIRT3 在衰老心脏代谢灵活性和蛋白质稳态中的作用
- 批准号:
10453002 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
PKA Signaling and Metabolic Inflexibility in the Diabetic Heart
糖尿病心脏中的 PKA 信号传导和代谢不灵活
- 批准号:
9306179 - 财政年份:2016
- 资助金额:
$ 7.31万 - 项目类别:
MITOCHONDRIAL DYSFUNCTION IN DIABETIC CARDIOMYOPATHY
糖尿病心肌病中的线粒体功能障碍
- 批准号:
8364979 - 财政年份:2011
- 资助金额:
$ 7.31万 - 项目类别:
Project 1 Mechanisms of Mitochondrial Dysfunction in Diabetic Cardiomyopathy
项目1 糖尿病心肌病线粒体功能障碍的机制
- 批准号:
8876728 - 财政年份:
- 资助金额:
$ 7.31万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
Studentship