Quantitative Image Analysis Specialized Resource
定量图像分析专业资源
基本信息
- 批准号:7991462
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmidesAnimalsAreaBiologicalBiological AssayComputer softwareComputersConsultationsDataDatabasesDevelopmentDevicesDiscipline of Nuclear MedicineExperimental DesignsFeedbackGrowthHuman ResourcesImageImage AnalysisImaging technologyIn VitroIndividualInternetKineticsLaboratoriesLearningModelingMusPerformancePortal SystemPositron-Emission TomographyProceduresProtocols documentationQuality ControlResearch PersonnelResearch Project GrantsResourcesRetrievalRunningScheduleServicesStatistical Data InterpretationStatistical ModelsStructureSystemTissuesTracerTrainingWorkbasecomputer infrastructuredata acquisitiondesignexperiencefile formatimage registrationimprovedin vivo Cellular and Molecular Imaging Centersinterestmolecular imagingoperationoptical imagingprogramssimulationskillsuser friendly software
项目摘要
QUANTITATIVE IMAGE ANALYSIS SPECIALIZED RESOURCE (DIRECTOR. HENRY HUANG,
PH.D).
D.3.1. Introduction:
The Quantitative Image Analysis Specialized Resource is a continuing Specialized Resource. The
QIASR provides essential image management and image analysis support to investigators using
molecular imaging at UCLA. As imaging technologies advance rapidly and image analysis becomes
increasingly sophisticated it is difficult and costly, if not impossible, for individual investigators to maintain their own image analysis capability. This Specialized Resource has been a key component of the nuclear medicine program at UCLA since late 1970's, and has been part of the ICMIC program since its inception.
Recognizing the need for newer and improved computational capability to handle the huge volume growth of small animal imaging studies, and to serve an ever-increasing number of investigators, this resource has devoted a major effort to build the computational infrastructure in the past several years to facilitate the image management and image analysis services. The successful development of the Internet-based kinetic imaging system (KIS) (Huang et al. 2005b) for simulation and analysis of mouse PET images and a computer portal system for molecular imaging data access system (MIDAS) (Truong et al. 2008) are examples of these efforts.. The functions, capabilities, and features of these systems will be described in more details below (Section 0.3.3.). We also interact directly with investigators of research projects and staff of the Small Animal Imaging Specialized Resource to assist them in managing their large volumes of image data and in their image analyses. In addition, we work with them to learn more cleariy what services are needed by the investigators, in order to provide better service and to get their feedback. With these computational software infra-structures now in place and a better understanding of the investigators' needs, we believe that we can provide an elevated level of image analysis service to the ICMIC investigators, effectively, efficiently and economically.
定量图像分析专业资源(主任。黄亨利,
PH.D)。
D.3.1.简介:
定量图像分析专业资源是一个持续的专业资源。的
QIASR为研究者提供必要的图像管理和图像分析支持,
分子成像技术。随着成像技术的快速发展和图像分析变得越来越重要,
越来越复杂的是,如果不是不可能的话,单个调查人员要保持自己的图像分析能力是困难和昂贵的。自20世纪70年代后期以来,该专业资源一直是加州大学洛杉矶分校核医学计划的关键组成部分,并且自ICMIC计划成立以来一直是ICMIC计划的一部分。
认识到需要更新和改进的计算能力来处理小动物成像研究的巨大增长,并为越来越多的研究人员提供服务,该资源在过去几年中投入了大量精力来建立计算基础设施,以促进图像管理和图像分析服务。这些努力的例子包括成功开发了用于模拟和分析小鼠PET图像的基于互联网的动态成像系统(KIS)(Huang等人,2005 b)和用于分子成像数据访问系统(MIDAS)的计算机门户系统(Truong等人,2008)。这些系统的功能、能力和特点将在下文中详细描述(第0.3.3节)。我们还直接与研究项目的调查人员和小动物成像专业资源的工作人员互动,以帮助他们管理大量的图像数据和图像分析。此外,我们还与他们合作,更清楚地了解调查人员需要哪些服务,以便提供更好的服务并获得他们的反馈。随着这些计算软件基础设施的到位,以及对调查人员需求的更好理解,我们相信我们可以有效、高效和经济地为ICMIC调查人员提供更高水平的图像分析服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HENRY SUNG-CHENG HUANG其他文献
HENRY SUNG-CHENG HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HENRY SUNG-CHENG HUANG', 18)}}的其他基金
QUANTITATIVE IMAGE ANALYSIS SPECIALIZED RESOURCE CORE
定量图像分析专业资源核心
- 批准号:
7738106 - 财政年份:2008
- 资助金额:
$ 4.77万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS SPECIALIZED RESOURCE CORE
定量图像分析专业资源核心
- 批准号:
7918211 - 财政年份:
- 资助金额:
$ 4.77万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant