Structural and molecular basis of drug-induced IKACh reduction

药物诱导的 IKACh 减少的结构和分子基础

基本信息

  • 批准号:
    8028282
  • 负责人:
  • 金额:
    $ 9.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application for NIH support is aimed at facilitating my transition from the current mentored stage of my career toward independence. It will give me the opportunity to learn new concepts and techniques in structural and molecular biology, which I will add to my background in cardiac electrophysiology. My long term career objective is to be an independent scientist, and to investigate structural, functional and trafficking aspects of drug-ion channels interactions. Therefore, I foresee that my laboratory will use novel approaches geared towards improving existing or generating new pharmacological therapies. I obtained my PhD from the Department of Pharmacology at SUNY Syracuse in 2007. My thesis focused on ionic and body size determinants of ventricular fibrillation (VF) initiation and maintenance. I elucidated the roles of sarcolemmal inward rectifier (Kir2.x) potassium channel proteins in the maintenance of VF, and of the ryanodine receptor type 2 in the initiation of ventricular tachyarrhythmias at the level of the His- Purkinje system. Additionally, I demonstrated that rotors are the mechanism of VF across mammalian species. Since 2008, I have been a postdoctoral fellow at the University of Michigan (U of M) Center for Arrhythmia Research. I also received an American Heart Association Postdoctoral Fellowship. Here I collaborate with U of M investigators towards elucidating, from the molecule to the organ, the interactions between chloroquine and inward rectifier channels using optical mapping, patch clamping and molecular modeling. Such interactions result in the reduction of inward rectifier currents, and lead to the termination of atrial fibrillation (AF) and VF. I propose to take advantage of opportunities readily available at U of M to combine my background in cardiac electrophysiology with new methodologies and skills that I hope to acquire through this proposal, to develop a scientific niche for myself. That niche will be dissimilar from, yet complimentary to, my past scientific endeavors, and will provide a solid basis of my work as an independent investigator. My proposal stems from the premise that antiarrhythmic drug-ion channel interactions remain poorly understood, and that incomplete knowledge and poor drug design may underlie the inefficacy of currently available antiarrhythmics. The Kir3.1 and Kir3.4 proteins that form the channels responsible for the acetylcholine-activated potassium current (IKAch) are important in perpetuating the rotors that underlie AF. Recently, the crystal structure of the Kir3.1 cytoplasmic domain was solved and the main features of Kir3.1 and Kir3.4 trafficking have been described. This offers an exciting opportunity to provide novel mechanistic insight into putative drug-channel interactions that result in AF termination through IKACh reduction. My hypothesis is that pharmacological reduction of IKACh can be achieved through two mechanisms: (1) direct channel blockade involving specific amino acids in the cytoplasmic domain of the channel; and (2) internalization of Kir3.1/Kir3.4 heteromers through the Arf-6 GTPase dependent pathway. I will utilize chloroquine, an antimalarial quinoline that blocks IKACh, and has been shown to terminate AF in some patients, as a model agent to study the structural and molecular basis of drug-induced IKACh reduction. My preliminary data indicate that chloroquine: 1- terminates cholinergic AF in the isolated sheep heart; 2- impedes ion movement through the channel's vestibule by interacting with specific amino acid residues as suggested by molecular modeling; 3- causes the internalization of Kir3.1/Kir3.4 in neonatal rat atrial myocytes, possibly through a direct interaction with the carboxyl terminus acidic cluster of Kir3.4, as suggested by nuclear magnetic resonance (NMR) experiments. These preliminary data support the feasibility of the experiments I propose to test my hypothesis. To achieve my aims, I will use a multidisciplinary approach, involving fluorescence microscopy, chemiluminescence, NMR spectroscopy, X-ray crystallography and electrophysiology. These integrative studies represent a novel step that can set the stage for the rational design of atrial-specific antifibrillatory agents. The outstanding environment at the U of M is ideal for attaining expertise in structural biology and ion channel trafficking. I will make use of the stellar facilities and investigators to become proficient in these new fields. The detailed mentoring plan laid out by my mentor, Dr. Jose Jalife, and co-mentors will ensure that I will acquire the necessary expertise in 1- X-ray crystallography under the guidance of Dr. Jeanne Stuckey, managing director of the Center for Structural biology at U of M, where I propose to crystallize and solve a high resolution 3-D structure of Kir3.1 in complex with chloroquine, and 2- microscopy and biochemistry of trafficking of Kir3.1/Kir3.4 proteins, and their chloroquine-induced internalization under the mentorship of Dr. Jeffery Martens, Associate Professor of Pharmacology at U of M, and Dr. Stephane Hatem, Director of Research at the INSERM, and Professor at the Faculty of Medicine Pitii-Salpitrihre of the Pierre Marie Curie University in Paris, France. Through the combination of the new techniques and concepts I will learn, and the relevant courses and seminars in crystallography and proteonomics I will attend, my mentors will ensure my transition to independence. I will be equipped with the wherewithal and skill to create a laboratory focused on structure/function relations and trafficking of ion channels, which will help to ensure the successful attainment of my ultimate goal of contributing to the improvement of the antifibrillatory armamentarium, and/or the discovery of new more effective antiarrhythmic drugs.
描述(由申请者提供):本申请旨在帮助我从目前职业生涯的指导阶段过渡到独立的阶段。这将使我有机会学习结构和分子生物学方面的新概念和新技术,这将增加我在心脏电生理学方面的背景。我的长期职业目标是成为一名独立的科学家,研究药物-离子通道相互作用的结构、功能和运输方面。因此,我预计我的实验室将使用新的方法来改进现有的或产生新的药理疗法。我于2007年在纽约州立大学锡拉丘兹分校药理学系获得博士学位。本论文主要研究决定室颤(VF)发生和维持的离子因素和体型因素。我在His-Purkinje系统水平上阐明了肌膜内向整流钾通道蛋白(Kir2.x)在维持室性颤动中的作用,以及兰尼定受体2型在起始室性快速性心律失常中的作用。此外,我还证明了转子是哺乳动物发生室颤的机制。自2008年以来,我一直是密歇根大学心律失常研究中心的博士后研究员。我还获得了美国心脏协会博士后奖学金。在这里,我与密歇根大学的研究人员合作,利用光学映射、膜片钳和分子建模,从分子到器官,阐明氯喹和内向整流通道之间的相互作用。这种相互作用导致内向整流电流减少,并导致房颤(AF)和室颤的终止。我建议利用密歇根大学随时可用的机会,将我在心脏电生理学方面的背景与我希望通过这项提议获得的新方法和技能结合起来,为自己发展一个科学利基。这一利基将与我过去的科学努力不同,但又是对我的赞扬,并将为我作为一名独立调查人员的工作提供坚实的基础。我的建议源于这样一个前提,即抗心律失常药物-离子通道相互作用仍然知之甚少,而不完整的知识和糟糕的药物设计可能是目前可用的抗心律失常药物无效的基础。Kir3.1和Kir3.4蛋白形成了负责乙酰胆碱激活的钾电流(IKAch)的通道,它们对于房颤背后的转子的永久化是重要的。最近,对Kir3.1胞质结构域的晶体结构进行了解析,并描述了Kir3.1和Kir3.4转运的主要特征。这提供了一个令人兴奋的机会,为通过IKACh减少导致房颤终止的假定药物-通道相互作用提供了新的机制洞察力。我的假设是,IKACh的药理作用可以通过两种机制实现:(1)直接阻断通道胞浆区域的特定氨基酸;(2)通过Arf-6 GTP酶依赖的途径内化Kir3.1/Kir3.4异构体。我将使用氯喹,一种阻断IKACh的抗疟疾喹啉,已被证明在一些患者中可以终止房颤,作为研究药物诱导的IKACh减少的结构和分子基础的模型试剂。我的初步数据表明,氯喹:1-终止离体羊心脏胆碱能房颤;2-如分子建模所示通过与特定氨基酸残基相互作用阻止离子通过通道前庭;3-如核磁共振实验所示,可能通过与Kir3.4的羧基末端酸性簇直接相互作用导致Kir3.1/Kir3.4在新生大鼠心房肌细胞中内化。这些初步数据支持了我提出的用来检验我的假设的实验的可行性。为了实现我的目标,我将使用多学科方法,涉及荧光显微镜、化学发光、核磁共振光谱、X射线结晶学和电生理学。这些综合性研究代表了一个新的步骤,可以为合理设计心房特异性抗纤颤药物奠定基础。密歇根大学优越的环境是获得结构生物学和离子通道运输专业知识的理想选择。我将利用一流的设施和调查人员精通这些新领域。我的导师Jose Jalife博士和共同导师制定的详细指导计划将确保我在密歇根大学结构生物学中心常务董事珍妮·斯塔基博士的指导下获得必要的1-X-射线结晶学专业知识。在那里,我提议在密歇根大学药理学副教授杰弗里·马滕斯博士和斯蒂芬·哈特姆博士的指导下,结晶和解决Kir3.1与氯喹络合物中的Kir3.1的高分辨率三维结构,以及Kir3.1/Kir3.4蛋白质的运输及其氯喹诱导的内化的2-显微镜和生物化学。INSERM研究主任,法国巴黎皮埃尔·玛丽·居里大学医学院Pitii-Salbitrihre教授。通过我将学习的新技术和新概念的结合,以及我将参加的结晶学和蛋白质组学的相关课程和研讨会,我的导师将确保我过渡到独立。我将拥有必要的资金和技能来创建一个专注于结构/功能关系和离子通道贩运的实验室,这将有助于确保成功实现我的最终目标,即为改进抗纤颤医疗设备做出贡献,和/或发现新的更有效的抗心律失常药物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sami Fouad Noujaim其他文献

Sami Fouad Noujaim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sami Fouad Noujaim', 18)}}的其他基金

Cardiac Toxicity of Flavorings in Electronic Nicotine Delivery Systems
电子尼古丁输送系统中香料的心脏毒性
  • 批准号:
    10471281
  • 财政年份:
    2020
  • 资助金额:
    $ 9.65万
  • 项目类别:
Cardiac Toxicity of Flavorings in Electronic Nicotine Delivery Systems
电子尼古丁输送系统中香料的心脏毒性
  • 批准号:
    10046578
  • 财政年份:
    2020
  • 资助金额:
    $ 9.65万
  • 项目类别:
Cardiac Toxicity of Flavorings in Electronic Nicotine Delivery Systems
电子尼古丁输送系统中香料的心脏毒性
  • 批准号:
    10251155
  • 财政年份:
    2020
  • 资助金额:
    $ 9.65万
  • 项目类别:
Cardiac Toxicity of Flavorings in Electronic Nicotine Delivery Systems
电子尼古丁输送系统中香料的心脏毒性
  • 批准号:
    10689077
  • 财政年份:
    2020
  • 资助金额:
    $ 9.65万
  • 项目类别:
Molecular Mechanisms for Atrial Fibrillation in Aging
衰老过程中心房颤动的分子机制
  • 批准号:
    9201766
  • 财政年份:
    2015
  • 资助金额:
    $ 9.65万
  • 项目类别:
Molecular Mechanisms for Atrial Fibrillation in Aging
衰老过程中心房颤动的分子机制
  • 批准号:
    9098782
  • 财政年份:
    2015
  • 资助金额:
    $ 9.65万
  • 项目类别:
Structural and molecular basis of drug-induced IKACh reduction
药物诱导的 IKACh 减少的结构和分子基础
  • 批准号:
    8535190
  • 财政年份:
    2011
  • 资助金额:
    $ 9.65万
  • 项目类别:
Structural and molecular basis of drug-induced IKACh reduction
药物诱导的 IKACh 减少的结构和分子基础
  • 批准号:
    8528193
  • 财政年份:
    2011
  • 资助金额:
    $ 9.65万
  • 项目类别:
Structural and molecular basis of drug-induced IKACh reduction
药物诱导的 IKACh 减少的结构和分子基础
  • 批准号:
    8678730
  • 财政年份:
    2011
  • 资助金额:
    $ 9.65万
  • 项目类别:
Structural and molecular basis of drug-induced IKACh reduction
药物诱导的 IKACh 减少的结构和分子基础
  • 批准号:
    8208063
  • 财政年份:
    2011
  • 资助金额:
    $ 9.65万
  • 项目类别:

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural studies into human muscle nicotinic acetylcholine receptors
人体肌肉烟碱乙酰胆碱受体的结构研究
  • 批准号:
    MR/Y012623/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Research Grant
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
  • 批准号:
    10830050
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
Study on biological significance of acetylcholine and the content in food resources
乙酰胆碱的生物学意义及其在食物资源中的含量研究
  • 批准号:
    23K05090
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
alpha7 nicotinic acetylcholine receptor allosteric modulation and native structure
α7烟碱乙酰胆碱受体变构调节和天然结构
  • 批准号:
    10678472
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
Diurnal Variation in Acetylcholine Modulation of Dopamine Dynamics Following Chronic Cocaine Intake
慢性可卡因摄入后乙酰胆碱对多巴胺动力学调节的昼夜变化
  • 批准号:
    10679573
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
Differential Nicotinic Acetylcholine Receptor Modulation of Striatal Dopamine Release as a Mechanism Underlying Individual Differences in Drug Acquisition Rates
纹状体多巴胺释放的烟碱乙酰胆碱受体差异调节是药物获取率个体差异的机制
  • 批准号:
    10553611
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
Striatal Regulation of Cortical Acetylcholine Release
纹状体对皮质乙酰胆碱释放的调节
  • 批准号:
    10549320
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
Structural basis of nicotinic acetylcholine receptor gating and toxin inhibition
烟碱乙酰胆碱受体门控和毒素抑制的结构基础
  • 批准号:
    10848770
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
Mechanisms of nicotinic acetylcholine receptor modulation of cocaine reward
烟碱乙酰胆碱受体调节可卡因奖赏的机制
  • 批准号:
    10672207
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了