Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
基本信息
- 批准号:8142261
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccountingAcuteAddressAffectAfghanistanAnisotropyAnteriorAreaBackBehavioralBiological MarkersBlast CellBloodBlood capillariesBlunt TraumaBrainBrain ConcussionCharacteristicsClinicalCognitiveCognitive deficitsConflict (Psychology)Corpus CallosumCraniocerebral TraumaDataDecelerationDevicesDiagnosisDiagnosticDiffuse Axonal InjuryDiffusion Magnetic Resonance ImagingDorsalElectromagneticsEmotionalEvaluationFiberFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingFunctional disorderGenerationsGlasgow Coma ScaleGoalsHealthImageImage AnalysisImaging TechniquesImpaired cognitionImpairmentIndividualInferiorInjuryInterventionIraqLateralLeadLeftLesionLinkLobeLocationLungMagnetic Resonance ImagingMagnetismMagnetoencephalographyMeasurementMeasuresMedialMemory impairmentMethodsMilitary PersonnelModalityMonitorNatureNerve FibersNervous System TraumaNeuraxisNeurologicNeuronal InjuryNeuronsNoiseOrganOutcomeParietalParietal LobePathologyPatientsPatternPerformancePhysiologicalPost-Concussion SyndromePrefrontal CortexProbabilityReportingResearchResidual stateResolutionRestSensitivity and SpecificityShort-Term MemorySignal TransductionSlow-Wave SleepSoftware ToolsSoldierSourceSportsStretchingStructureSurfaceSymptomsTBI PatientsTechniquesTemporal LobeTestingTissuesTraumaTraumatic Brain InjuryVisual CortexWarbasebrain tissuecapillarycombatcraniumdiffusion anisotropyexperiencefrontal lobegray matterimaging modalityinjuredmemory encodingmemory retrievalmillimetermillisecondnerve injuryneuroimagingneurophysiologyneuropsychologicalnovelpatient populationpost interventionpsychologicresponsesuccesstoolwhite matter
项目摘要
DESCRIPTION (provided by applicant):
Mild traumatic brain injury (TBI) represents one of the most significant health issues in VA and active duty military patients. Diagnosing and monitoring of TBI are major focuses of VA research. Mild (and some moderate) TBI can be difficult to diagnose because the injuries are generally not visible on conventional acute neuroimaging techniques (e.g., CT and MRI). Furthermore, conventional neuroimaging techniques have limited sensitivity to the physiological alterations due to TBI, and poor predictive utility for long-term outcome. Our preliminary study shows that neuronal tissues injured by trauma generate low frequency electromagnetic signals, decreased functional connectivity, and reduction of diffusion anisotropy. The proposed study will use integrated multi-modality neuroimaging approach involving Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) in diagnosing and monitoring mild TBI. This approach has the potential of attaining higher sensitivity and specificity than conventional imaging techniques in detecting subtle neuronal injuries in mild TBI patients in VA and active duty military patients. There are three specific aims in the proposed study: Specific Aim 1 will investigate the diagnostic value of the integrated MEG-DTI approach in VA and active duty patients with mTBI by detecting neuronal injuries (loci of the injury as well as affected neuronal networks) not visible with conventional neuroimaging methods (e.g., CT and MRI). Our preliminary data show that pathological MEG slow-waves, reduced MEG functional connectivity, and reduced DTI anisotropy are characteristics of axonal injury due to tissue shearing and stretching in mTBI, with markedly better sensitivity than CT/MRI in diagnosing individual mild TBI patients. Specific Aim 2 studies the neurophysiological basis of the cognitive impairments using N-back working memory (WM) MEG task in active duty and VA patients with mild TBI. Specific Aim 3 of the present application will study the relationship between post-concussive symptoms, cognitive deficits as measured by neuropsychological exams, and the neuroimaging measurements with MEG and DTI in VA and active duty patients with mTBI. To achieve these aims, we propose to develop new imaging analysis tools: frequency-domain VESTAL for accurately localizing pathological MEG slow-waves; Dual-core Beamformer for reliably obtaining the neuronal networks with reduced functional connectivity using MEG under the condition of poor signal to noise ratio; and a platform for integrating the functional MEG findings in the gray-matter with structural DTI findings in the white-matter fiber tracts. The success of the proposed approach will not only greatly enhance our ability to diagnose mild TBI by detecting subtle neural injuries (e.g., loci and networks) that are invisible using conventional neuroimaging techniques, but also will provide the neuroimaging tools and software which can potentially be used as an objective evaluation method during pre- and post-intervention assessments of novel neuropharmacological and/or neuropsychological treatments for VA and active duty patients with TBI.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGXIONG HUANG其他文献
MINGXIONG HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGXIONG HUANG', 18)}}的其他基金
Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
- 批准号:
10651625 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
- 批准号:
10398791 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
- 批准号:
9888520 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
9911992 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
10189733 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
10383148 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Neuroimaging Investigation of mTBI and its Potentiation of PTSD in Veterans
mTBI 的神经影像学研究及其对退伍军人 PTSD 的增强作用
- 批准号:
9486873 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
- 批准号:
8391100 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
- 批准号:
8590197 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Neuroimaging Investigation of mTBI and its Potentiation of PTSD in Veterans
mTBI 的神经影像学研究及其对退伍军人 PTSD 的增强作用
- 批准号:
8923101 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




