Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
基本信息
- 批准号:10651625
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmygdaloid structureAnimalsAreaAttentionBehavior DisordersBehavioralBrainChronicClassificationClinicalCognitionCognition DisordersCognitiveCognitive deficitsControl GroupsDataDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiffuse Axonal InjuryDiffusionElectromagneticsEmotionalEmotionsFunctional disorderGeneral PopulationGoalsGrantHyperactivityImaging technologyImpaired cognitionIndividualInjuryInterneuronsMachine LearningMagnetic Resonance ImagingMagnetoencephalographyMental disordersNeurobiologyNeurologicNeurologic SymptomsNeuronsNeuropsychologyParietalParvalbuminsPatientsPost-Concussion SyndromePost-Traumatic Stress DisordersPrefrontal CortexQuality of lifeRecoveryResearchRestRiskRoleScientistSensitivity and SpecificityShort-Term MemorySignal TransductionSlow-Wave SleepSourceSymptomsTechniquesValidationVeteransX-Ray Computed Tomographyartificial neural networkclinical applicationclinical carecognitive functioncomorbiditydiagnostic accuracydiagnostic algorithmdiagnostic criteriaexecutive functiongray matterimaging biomarkerimprovedinjuredinterestmachine learning algorithmmild traumatic brain injuryneuroimagingneurophysiologyneuropsychiatrynovelnovel strategiesprocessing speedresponsesuccesswhite matter
项目摘要
Mild traumatic brain injury (mTBI) is a leading cause of sustained physical, cognitive, emotional, and
behavioral deficits in OEF/OIF/OND Veterans and the general public. However, the underlying pathophysiology
and recovery mechanisms, especially those associated with cognitive functioning in mTBI, are not completely
understood. The neuronal mechanisms for the increased risk of PTSD after an mTBI are even less clear.
Conventional MRI and CT images are generally negative even in patients with persistent post-concussive
symptoms (PCS) and/or PTSD symptoms. Diffusion-based MRI techniques have been developed to identify
abnormalities in white-matter tracts, owing to the major role of diffuse axonal injury (DAI) in mTBI. Yet even
sophisticated diffusion-based MRI techniques are not sufficiently sensitive for reliable clinical applications.
Recent animal studies indicate that gray matter is also vulnerable to DAI, which leads to abnormal
electromagnetic signals from the injured regions. In this regard, support is mounting for the sensitivity of
resting-state magnetoencephalography (rs-MEG) source imaging markers for detecting neuronal abnormalities
in mTBI. We demonstrated that rs-MEG delta-wave (1-4 Hz) markers were very sensitive in distinguishing
mTBI patients with persistent PCS from neurologically intact individuals. We also found that rs-MEG gamma-
band (30-80 Hz) markers show marked hyperactivity in mTBI, possibly due to injury of GABA-ergic
parvalbumin-positive (PV+) interneurons. In addition, we found that task-evoked MEG (te-MEG) recordings
during working memory (WM) task detected abnormal signals throughout the brain in mTBI that were related to
poorer cognitive functioning. A main goal of this application is to develop highly sensitive diagnostic algorithms
to differentiate Veterans with mTBI from those with comorbid mTBI and PTSD, and those healthy control
Veterans. The new approaches will use artificial neural network based machine-learning techniques to
integrate rs-MEG and te-MEG imaging makers. We will study three groups of Veterans (N=75 per group): 1)
individuals with mTBI and persistent PCS (mTBI-only group); 2) individuals with comorbid mTBI and PTSD
who have persistent PCS and PTSD symptoms; 3) healthy controls (HC). Aim 1 will establish a machine-
learning based MEG diagnostic algorithm for mTBI that optimally integrates three MEG regional imaging
markers (i.e., delta-band and gamma-band rs-MEG; WM evoked MEG) to differentiate Veterans with mTBI
(mTBI-only and comorbid mTBI-PTSD) from HC Veterans with >90% accuracy. We predict that sensitive
features for mTBI classification will include abnormal increases in rs-MEG delta- and gamma-band activity in
prefrontal and posterior-parietal areas and aberrant WM evoked activity in the mTBI-only and comorbid groups
relative to the HC group. Aim 2 will develop a machine-learning MEG algorithm that integrates rs-MEG activity
and te-MEG responses evoked by a negative emotion processing picture (NEPP) task to differentiate Veterans
with mTBI-only from those with comorbid mTBI-PTSD with > 90% accuracy. We predict that comorbid mTBI-
PTSD group will show increases in rs-MEG (beta-band) and NEPP te-MEG activity from amygdala and
decreases in activity from ventromedial prefrontal cortex (vmPFC), dorsolateral PFC (dlPFC), and precuneus
over the mTBI-only group. Aim 3 will examine the correlates of abnormal MEG-based neurophysiological
features in mTBI-only and comorbid mTBI-PTSD with clinical symptoms, cognitive impairments, and real-world
quality of life. We predict that rs-MEG and WM te-MEG in specific prefrontal and posterior parietal areas will
correlate with PCS symptoms and cognitive deficits. In the comorbid mTBI-PTSD group, PTSD symptoms will
correlate with abnormal rs-MEG and NEPP te-MEG hyperactivity in the amygdala, and abnormal rs-MEG
hypoactivity in the vmPFC, dlPFC, and precuneus. The success of this project will significantly improve
neuroimaging-based techniques that can effectively aid in the diagnosis of mTBI and better characterize the
relationships among neurobiological, neuropsychological, and neuropsychiatric effects of mTBI and PTSD.
轻度创伤性脑损伤(mTBI)是持续的身体、认知、情感和精神损伤的主要原因。
OEF/OIF/OND退伍军人和公众的行为缺陷。然而,潜在的病理生理学
和恢复机制,特别是那些与mTBI中的认知功能相关的机制,
明白mTBI后PTSD风险增加的神经元机制甚至更不清楚。
即使在持续性脑震荡后的患者中,常规MRI和CT图像通常也是阴性的。
症状(PCS)和/或PTSD症状。已经开发了基于扩散的MRI技术来识别
由于弥漫性轴索损伤(DAI)在mTBI中的主要作用,白质束异常。还甚至
复杂的基于扩散的MRI技术对于可靠的临床应用来说不够灵敏。
最近的动物研究表明,灰质也容易受到DAI的影响,这会导致异常的
从受伤区域发出的电磁信号。在这方面,支持的敏感性越来越高,
用于检测神经元异常的静息态脑磁图(rs-MEG)源成像标记
在mTBI中。我们证明,rs-MEG δ波(1-4 Hz)标记物在区分
来自神经系统完整个体的持续PCS的mTBI患者。我们还发现rs-MEG γ-
频带(30-80 Hz)标记物显示mTBI中明显的活动过度,可能是由于GABA能神经元损伤所致。
小清蛋白阳性(PV+)中间神经元。此外,我们发现,任务诱发脑磁图(te-MEG)记录,
在工作记忆(WM)任务中,检测到mTBI中整个大脑的异常信号,这些信号与
认知功能更差本申请的一个主要目标是开发高度敏感的诊断算法
将mTBI退伍军人与mTBI和PTSD共病者以及健康对照者区分开来,
老兵新方法将使用基于人工神经网络的机器学习技术,
集成rs-MEG和te-MEG成像标记器。我们将研究三组退伍军人(每组N=75):1)
患有mTBI和持续性PCS的个体(仅mTBI组); 2)患有mTBI和PTSD共病的个体
有持续PCS和PTSD症状的患者; 3)健康对照(HC)。目标1将建立一个机器-
用于mTBI的基于学习的MEG诊断算法,其最佳地整合了三个MEG区域成像
标记(即,δ-波段和γ-波段rs-MEG; WM诱发的MEG)以区分患有mTBI的退伍军人
(仅mTBI和共病mTBI-PTSD),准确率>90%。我们预测敏感的
mTBI分类的特征将包括rs-MEG δ和γ带活动的异常增加,
仅mTBI组和共病组的前额叶和后顶叶区以及异常WM诱发活动
相对于HC组。目标2将开发一种机器学习MEG算法,该算法集成了rs-MEG活动
和te-MEG反应诱发的负面情绪加工图片(NEPP)任务,以区分退伍军人
与mTBI-PTSD共病患者的mTBI-only比较,准确率> 90%。我们预测共病mTBI-
PTSD组将显示杏仁核的rs-MEG(β带)和NEPP te-MEG活性增加,
腹内侧前额叶皮质(vmPFC)、背外侧PFC(dlPFC)和楔前叶的活动减少
mTBI组。目的3将检查异常的基于MEG的神经生理学的相关性,
仅mTBI和mTBI-PTSD共病患者的临床症状、认知障碍和现实世界的特征
生活质量我们预测,rs-MEG和WM te-MEG在特定的前额叶和后顶叶区域将
与PCS症状和认知缺陷相关。在mTBI-PTSD共病组中,PTSD症状将
与杏仁核中rs-MEG和NEPP te-MEG过度活跃以及rs-MEG异常相关
VMPFC、DLPFC和楔前叶活动减退。该项目的成功将大大提高
基于神经成像的技术,可以有效地帮助诊断mTBI,并更好地表征
mTBI和PTSD的神经生物学、神经心理学和神经精神学效应之间的关系。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimized polymer enhanced foam flooding for ordinary heavy oil reservoir after cross-linked polymer flooding.
普通稠油油藏交联聚合物驱后优化聚合物增强泡沫驱
- DOI:10.1007/s13202-015-0226-2
- 发表时间:2016
- 期刊:
- 影响因子:2.2
- 作者:Sun C;Hou J;Pan G;Xia Z
- 通讯作者:Xia Z
Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines.
- DOI:10.3390/diagnostics12040987
- 发表时间:2022-04-14
- 期刊:
- 影响因子:3.6
- 作者:Harrington, Deborah L.;Hsu, Po-Ya;Theilmann, Rebecca J.;Angeles-Quinto, Annemarie;Robb-Swan, Ashley;Nichols, Sharon;Song, Tao;Le, Lu;Rimmele, Carl;Matthews, Scott;Yurgil, Kate A.;Drake, Angela;Ji, Zhengwei;Guo, Jian;Cheng, Chung-Kuan;Lee, Roland R.;Baker, Dewleen G.;Huang, Mingxiong
- 通讯作者:Huang, Mingxiong
Resting-state magnetoencephalography source magnitude imaging with deep-learning neural network for classification of symptomatic combat-related mild traumatic brain injury.
- DOI:10.1002/hbm.25340
- 发表时间:2021-05
- 期刊:
- 影响因子:4.8
- 作者:Huang MX;Huang CW;Harrington DL;Robb-Swan A;Angeles-Quinto A;Nichols S;Huang JW;Le L;Rimmele C;Matthews S;Drake A;Song T;Ji Z;Cheng CK;Shen Q;Foote E;Lerman I;Yurgil KA;Hansen HB;Naviaux RK;Dynes R;Baker DG;Lee RR
- 通讯作者:Lee RR
Internetwork Connectivity Predicts Cognitive Decline in Parkinson's and Is Altered by Genetic Variants.
- DOI:10.3389/fnagi.2022.853029
- 发表时间:2022
- 期刊:
- 影响因子:4.8
- 作者:Wei X;Shen Q;Litvan I;Huang M;Lee RR;Harrington DL
- 通讯作者:Harrington DL
Magnetoencephalography Language Mapping Using Auditory Memory Retrieval and Silent Repeating Task.
- DOI:10.1097/wnp.0000000000000947
- 发表时间:2024-02-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGXIONG HUANG其他文献
MINGXIONG HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGXIONG HUANG', 18)}}的其他基金
Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
- 批准号:
10398791 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Diagnostic Machine Learning Algorithm to Identify MEG Features of Mild TBI and Comorbid PTSD
用于识别轻度 TBI 和共病 PTSD 的 MEG 特征的诊断机器学习算法
- 批准号:
9888520 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
10189733 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
9911992 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Passive electrical neurofeedback treatment of mTBI: MEG and Behavioral Outcomes
mTBI 的被动电神经反馈治疗:MEG 和行为结果
- 批准号:
10383148 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Neuroimaging Investigation of mTBI and its Potentiation of PTSD in Veterans
mTBI 的神经影像学研究及其对退伍军人 PTSD 的增强作用
- 批准号:
9486873 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
- 批准号:
8391100 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
- 批准号:
8142261 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Diagnosing Mild TBI in VA and Active Duty Military Patients using MEG and DTI
使用 MEG 和 DTI 诊断 VA 和现役军人患者的轻度 TBI
- 批准号:
8590197 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Neuroimaging Investigation of mTBI and its Potentiation of PTSD in Veterans
mTBI 的神经影像学研究及其对退伍军人 PTSD 的增强作用
- 批准号:
8923101 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




