Biomechanics of Blood Stream Infections

血流感染的生物力学

基本信息

  • 批准号:
    8255554
  • 负责人:
  • 金额:
    $ 40.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Intravascular device-related blood stream infection is the leading cause of bacteremia in the United States and is a common and life threatening complication among ill and injured patients. Staphylococcus epidermidis and Klebsiella pneumoniae are common causes of intravascular catheter infection, in part due to their production of biofilms that resist penetration by host innate defenses and antibiotics. Infected devices eject a plume of mediators, bacteria, and bacterial and host matrix that may leave the catheter at nearly half a meter per second and either come to rest in a microvascular debris field in the lung or pass through into the arterial circulation. The fate of this debris- entrapment in a capillary bed or persistence in the blood - is surely linked to the fate of the host, and may be determined by the tendency of these fragments to deform and fracture during their lifespan. The overarching goal of this work is mechanically phenotype this material and to experimentally link these organisms' mechanics to behavior in vivo so as to better understand clinical device infections and their complications. The work is very multidisciplinary and draws on expertise in microrheology, applied mathematics, and established animal models of bacteremia. A major objective is the development of new experimental and computational tools for evaluating microscopic nonlinear viscoelastic particles through collaboration with engineers, mathematicians, and immunologists. Our first aim is to quantify linear and nonlinear viscoelastic properties of biofilm debris and to use advanced image processing and statistical models to evaluate intra- debris heterogeneity. Next, we will consider debris at a population level using mathematical techniques adapted from models of colloid chemistry. Lastly, we will employ animal models of bloodstream infection to validate predictions made from the results of aims 1 and 2 and to test a novel means of promoting bacterial clearance by promoting bacterial aggregation. Equipped with mechanical characterizations of bacterial soft matter at a microscopic scale previously not possible, we hope to answer the following questions: When encountering a capillary, can a biofilm-derived aggregate deform sufficiently to escape filtration? When traveling in the bloodstream, will debris fracture into constituent bacteria or remain as multicellular aggregates? Lastly, how do the fundamental mechanical properties of bacterial aggregates impact host-pathogen interactions in acute life- threatening bloodstream infection and how can those properties be exploited therapeutically? The clinical impact of this work will be to open new therapeutic avenues that address the rheology and mechanics of intravascular infection. Additional benefits include intrinsic value in reframing the problem of bloodstream infection in a biophysical, rather than immunological, context and in developing measurement and computational strategies that extend into a number of other fields interested in the behavior of microscopic viscoelastic material. PUBLIC HEALTH RELEVANCE The goal of this project is to better understand the biophysical properties of small aggregates of bacteria that enter the bloodstream during life threatening infections. Blood infections are common and frequently lethal, especially in immunocompromised patients such as those undergoing treatment for cancer. Our research is being carried out to better understand how patients and bacteria interact and to look for new strategies for protecting and treating patients with serious bloodstream infections.
描述(由申请方提供):血管内器械相关血流感染是美国菌血症的主要原因,是患病和受伤患者中常见的危及生命的并发症。表皮葡萄球菌和肺炎克雷伯菌是血管内导管感染的常见原因,部分原因是它们产生的生物膜抵抗宿主先天防御和抗生素的渗透。受感染的器械会喷出介质、细菌以及细菌和宿主基质的羽流,这些介质、细菌和宿主基质可能以每秒近半米的速度离开导管,并停留在肺中的微血管碎片场中或进入动脉循环。这些碎片的命运--滞留在毛细血管床中或持续存在于血液中--肯定与宿主的命运有关,并且可能由这些碎片在其寿命期间变形和断裂的趋势决定。这项工作的首要目标是机械表型这种材料,并通过实验将这些生物体的力学与体内行为联系起来,以便更好地了解临床器械感染及其并发症。这项工作是非常多学科的,并借鉴了微观流变学,应用数学和建立菌血症动物模型的专业知识。一个主要目标是通过与工程师,数学家和免疫学家合作,开发新的实验和计算工具,用于评估微观非线性粘弹性颗粒。我们的第一个目标是量化生物膜碎片的线性和非线性粘弹性,并使用先进的图像处理和统计模型来评估碎片内的异质性。接下来,我们将使用根据胶体化学模型改编的数学技术,从总体水平上考虑碎片。最后,我们将采用血流感染的动物模型来验证根据目标1和2的结果所做的预测,并测试通过促进细菌聚集来促进细菌清除的新方法。配备了机械表征细菌软物质在微观尺度以前不可能的,我们希望回答以下问题:当遇到毛细管,生物膜衍生的聚集体变形足以逃脱过滤?当碎片在血液中流动时,碎片会破裂成组成细菌还是以多细胞聚集体的形式存在?最后,细菌聚集体的基本机械性质如何影响急性危及生命的血流感染中的宿主-病原体相互作用,以及如何在治疗上利用这些性质?这项工作的临床影响将是开辟新的治疗途径,解决血管内感染的流变学和力学。额外的好处包括内在价值,在生物物理学,而不是免疫学,背景下,并在开发测量和计算策略,扩展到许多其他领域感兴趣的微观粘弹性材料的行为的血流感染的问题。该项目的目标是更好地了解在危及生命的感染期间进入血液的细菌小聚集体的生物物理特性。血液感染是常见的,并且经常是致命的,特别是在免疫功能低下的患者中,例如那些正在接受癌症治疗的患者。我们正在进行研究,以更好地了解患者和细菌如何相互作用,并寻找保护和治疗严重血流感染患者的新策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN G YOUNGER其他文献

JOHN G YOUNGER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN G YOUNGER', 18)}}的其他基金

Biomechanics of Blood Stream Infections
血流感染的生物力学
  • 批准号:
    8067850
  • 财政年份:
    2009
  • 资助金额:
    $ 40.9万
  • 项目类别:
Biomechanics of Blood Stream Infections
血流感染的生物力学
  • 批准号:
    7858069
  • 财政年份:
    2009
  • 资助金额:
    $ 40.9万
  • 项目类别:
C5a in defense against murine Gram-negative pneumonia
C5a 防御小鼠革兰氏阴性肺炎
  • 批准号:
    7089843
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
C5a in defense against murine Gram-negative pneumonia
C5a 防御小鼠革兰氏阴性肺炎
  • 批准号:
    7465368
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
Complement C5A in Human Sepsis
补体 C5A 在人类脓毒症中的作用
  • 批准号:
    8636261
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
Complement C5a in Human Sepsis
补体 C5a 在人类脓毒症中的作用
  • 批准号:
    8041457
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
Complement C5a in Human Sepsis
补体 C5a 在人类脓毒症中的作用
  • 批准号:
    8487415
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
C5a in defense against murine Gram-negative pneumonia
C5a 防御小鼠革兰氏阴性肺炎
  • 批准号:
    6912821
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
C5a in defense against murine Gram-negative pneumonia
C5a 防御小鼠革兰氏阴性肺炎
  • 批准号:
    7107799
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:
Complement C5a in Human Sepsis
补体 C5a 在人类脓毒症中的作用
  • 批准号:
    8669987
  • 财政年份:
    2004
  • 资助金额:
    $ 40.9万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了